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ABSTRACT

Matching is defined as the methodology of merging micro-data files to
create larger files of data. Matching is often done to extract statistical

information which cannot be obtained from the individual files that are
incomplete. Current federal statistical practice involving multivariate
file-merging techniques is typically not based on a formal statistical
theory. In view of this situation, a survey on matching is given. All known
models for matching are presented under a unified framework, which consists
of three fituations involving the same or similar individuals.

IThe properties of a maximum likelihood strategy to match files of data
involving the same individuals are derived via ranks and order-statistics
from bivariate populations. In addition, the properties of this strategy
have been examined with respect to a more reasonable criterion called
epsilon-correct matching. Asymptotic results for such situations, including
:(I> the Poisson approximation for the distribution of the number of correct
matches, and-(i1) convergence in probability of the average number of
epsilon-corect matche, have been derived. Small-sample properties, like the
monotone behavior of the expected number of matches with respect to the
dependence of parameters of the underlying models have been proved.

Two matching strategies due to Kadane (1978) and one strategy due to
Sims (1978) for merging files of data on similar individuals are discussed.
These strategies are evaluated via a Monte-Carlo study of matching models
involving trivariate normal distributions.
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1 1. INTRODUCTION

a
One of the most important tools for analyzing economic policies

3 is the micro-analytic model. This technique is used frequently in

public decision-making centers. Virtually every Federal Agency uses

micro-analytic models for the evaluation of policy proposals.

3 Direct use of sample observations rather than aggregated data

is characteristic of the micro-analytic approach. For this reason,

the micro-data that is used as input to the model has a significant

bearing on the validity of the results of the model. Furthermore,

when all the input-data come from a single sample, the quality of the

model depends on, among others, sampling and data-recording proce-

dures. However, if the data from a single source is insufficient or

3 partly aggregated, then typically multiple sources of data are used

to provide the necessary input to the model. At the same time,

Uissues such as validity and quality of the results of the model
5 cannot be assessed as easily as when we have a single source of data

as input. In such situations, government statisticians have been

using a methodology in which multiple sources of data are merged to

form a composite data-file. Effective use of the different pieces of I

data in order to produce sensible but more comprehensive files is a

fundamental issue in the file-merging methodology.
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Some of the difficulties associated with the merging procedures

and techniques for their resolution have been known for quite some-

time. Initiated by the Federal Subcommittee on Matching Techniques, 3
there has recently been renewed effort to establish solid theoretical

foundation and empirical justification for the file-merging method

ology. This research reviews the relevant literature and then pre-

sents new statistical properties of some known procedures for merging

data-files. We shall now give an example of a typical situation in

which merging of two files is carried cut.

1.1 A Paradigmn

A micro-economic model in heavy use at the Office of Tax

Analysis (OTA), Department of the Treasury, is the Federal Personal

Income Tax Model. This model Is used to assess proposed tax law

changes in terms of their effects on the distribution of after-tax

income, the efficiency with which the changes will operate in

achieving their objectives, etc. The inputs for this model are two

sources of micro-data, namely the Statistics of Income File (SOt)

and the Current Population Survey (CPS). The SOT file is generated

annually by the Internal Revenue Service (IRS) and it consists of

personal tax return data. The CPS file is produced monthly by the

Bureau of the Census. As we will explain in Section 1.2, such

pooling of data from more than one Federal Agency has been severely

restricted In recent years by, among others. ccnf)dentiality issues

such a3 the privacy of the individuals involved in the aforcrwrt Uerntned

-- I



1 3
files of data. For this reason, complete information, especially

identifiers such as 3ocial security numbers, is typically not

released by the IRS and the CensuIs Bureau. The resulting micro-data

files are compromises between complete Census files and fully aggre-

U gated data-sets. Thus, sufficient detail remains to support micro-

analysis of the population, while partial aggregation protects

individual privacy and greatly diminishes computational burden.

A typical problem in tax-policy evaluation occurs when no single

available data file such as SOI or CPS contains all the information

needed for an analysis. For example, consider the variables

W , (X,Y, ZZ 2), where

X = Allowable itemizations and capital gains

Y = Old Age Survivors Disability Insurance (OASDI)

Z= Social security number

Z = Marital status

I Suppose that we are interested in estimating a simple correlation

PXY between X and Y or, more generally, the expectation of a known

function g, say, of W; that is the integral

=Ig(w) clF(w) (.4

where F(w) is the joint distribution function of the variables in w.

Now, the SOI microdata file cannot be used in its original form since

it does not include the OASDI benefits (Y). Census files (CPS) with

5 OASDI benefits do not allow a complete analysis of the effect of j
including this benefit, since it does not contain information on nm

*-1
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allowable itemizations and capital gains (X). Thus, instead of a

observing X,Y*ZZ 2 jointly on the same units, we have to get only

the following pair of files:I

IFile 1 (SOI: XZ 1 Z Z2

File 2 (CPS): Y,Z1. 2 3
Estimating y based on the fragmetary data provided by File I and

File 2 is an important practical problem that has not yet been solved 5
satisfactorily. In an attempt to cope with situations such as the 3
OTA model, Federal Agencies have long been using procedures for

matching or merging the two incomplete files so that one can do the 3
usual inference for y, hoping that the merged-file is a reasonable

substitute foe the unobserved data on (X,Y,Z1 ,Z2 ). I

The reporting units In CPS are households. In general, the

units in a file may refer to other types of legal persons, like

corporations, partnerships and Fiduclaries. The term "Individual" 3
will be used as a generic label in this thesis to refer to the

reporting units of the micro-data files.

1.2 A Dichotomy of Matching Problems

Roughly speaking, there are two different categories of matching

problem. The first category consists of problems of exact matching

in which it is desired to identify pairs of records in the two files

that pertain to the same individual. Accurate Information on Identi-

fiers such as social security number, name, address are assumed to be

..I
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3 available when exact-matching the two files, It is clear that all we

need to c:_rry out an exact match of two files is, among other tools,

an efficient software to sort the individuals by their identifiers.

With the help of such software, we can, within reasonable error, link

a given individual in File 1 with an individual in File 2 such that

these two units possess the same values for the Identifiers. The

resulting merged file contains data which are more comprehensive thin

both File 1 and File 2. Also, even after merging, most records will

pertain to the same individual, the number of erroneous matches In

Ithe enlarged file depending on the particular software used in the
process of merging. It is clear that, if accurate identifiers are

available for the units in the two files, then no statistical issues

3 are involved in the matching methodology and we shall not discuss

this type of problem any more. However, one may refer to, amnong

I others, Fellegi and Sunter (1V69) and Radner et al. (1980) for work

3 related to the exact-matching methodology. We shall close our

discussion of this type of matching problem by noting some of the

reascns why exact matching of files is often not possible.

First, over the past several years, there have been significant

Ichanges in the laws and regulations pertinent to exact matching of
records for sttistical and research purposes. New laws, especially

the Privacy Act of 1974 and the Tax Reform Act of 1976, have imposed

additional restrictions on the matching of records belonging tc more

than one Federal Agency and on the matching of fCllet o' Federal

Agt-nclec with those or other organizations. As a restiit of tlese

I
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laws, some Agencies have limited access to their records for statis-

tical purposes to an even greotsr extent than seems necessary by

statutory requirements.

Second, analyses of microdata often involve data from units that

are not available from a single source but are available from several

sources. For example, suppose that one is interested in the relation-

ships among two sets of variables, one set consisting of information

about health care expenses incurred by individuals and the other set

consisting of Information about receipt of various types of welfare

benefits. Suppose further that no existing data file contains all of

the needed variables, but that two samples of a target population,

which come from two different surveys, together contain all these

variables. If executing a new survey to obtain all the variables

from a single sample is not feasible, then onp might match the two

samples and use the merged file for statistical analyses of variables

which are not present in the same sample. Note that the two sample

surveys may have information on the same individuals whose iden-

titLies are either unknown or unreliable. However, in the afore-

mentioned example, it is more appropriate to assume that the two

samples contain very few or nio individuals in common. In case the

two samples are stochastically indeendent, we shall describe the

wits in the two samples as similar individuals.

Suppose, then, that exact matching is not feasible in view of

the aforementioned reasons. Then the tools that are used in the

exact matching methodology are inadequate for the purpose of merging

a
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I the two files or data. In particular, Identifiers are practically

useless. However, the probabilistic structure of the populations

3 that generate the data In the two files or other statistical

techniques can often be used to combine the two files. Such proce-

I dures will be called statistical matching strategies.

In the literature on matching files there is no consensus on

rigid definitions of Exact Match and Statistical Match. Indeed, it

is traditional to distinguish these two types of problem by verify-

Ing whether same (exact) or similar (statisLical) Individuals are in

Uthe two files. Our classification of matching problems is somewhat

different from the usual practice in the sense that any procedure

for merging files, which may contain the same or similar Individuals,

will be described as a statistical match if statistical techniques

are involved in the process of merging. This conventIon Is in agree-

Iment with that of Woodbury (1983), who describes certain matching

problems involving the same individuals in two files as "Statistical

Record Matching for Files".

1.3 A General Set-up for Statistical Matching

I Consider a universe #/ of individuals. Let X. Y, Z denote three

groups of random variables and let us assume that we cannot observe

3 the vector W = (X,YZ) for any unit in 9/. However, suppose that the

following data are available:

(Base) File 1: n individuals, each with information on a

function Wi. say, of W.

I



and (Supplementary) File 2: n2 Individuals, each with informatlon

on a function. W ;. say, of W.

Various matching problems arise depending on what type of data are in

-- and W. We distinguish only three different situations:

Case I: W X and W; Y; we also assume that the two riles

contain the same individuals.

Case I: Let W! = (X.Z), W; = (Y.Z). As in Case I, we further

assume that the two files contain the same individuals.

Case lIT: Let WO z (XZ), W; = (Y,Z). Unlike in Cases I and It, we
I -2

assume that the two files contain similar individuals.

1.4 The Matching Methodolog

Some Important Steps

We shall now mention some steps involved in actually creating a

statistical match between two given files, First, if the populations

represented by the files differ, a "universe adjustment" is carried

out to ensure that there is a common universe )?/ from which the indi

viduals of the two files are sampled. Second, a "units adjustment"

might be needed if the units of observation Iii the two files difer

(e.g. persons arid tax units). Third, "matching or common variables."

Z, are defined and it is assumed that File 1 with nI records carries

information on (X,Z), whereas File 2 with n2 records consists of data

on (Y,Z). The variables X and Y are often called non matching

variables. FinaLly, in the "merging" step, If the records CXZ

an2 (Y J,Z K), respectively from File 1 and File 2, are to be matched,

then one completes the Itt record In File I by substituting !, for
J

M IN
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the missing value. Thus. we get the :yntnetic File 1:

(X,.J4) 1.2

Clearly, the same methodology can be used to get a synthetic File 2

3 by finding substitutes for missing X values of File 2 using X's from

File 1. However, in order to keep our discussion simple, we shall

U often be concerned with completing only File I. Although, many

different methods have been used in this final step, several basic

similarities can be identified. In most matches, certain Z variabies

are treated as the so-called "cohort" variables. Such variables

establish "packets- of the records In each of th- two iles, with

U matching permitted only between pairs of cases in the same packet.

3 For example, sex is often a cohort var-able so that a rale can be

matched with another male, and a female with another female. This

5 step about the formation of cells or packets Is aimed at diffusing

the dissimilarities between units that are being matched. Further-

more, depending on how many of the common variables are used as

3 cohort variables, there may be very little or no within-packet

variation with regard to Z. In such situations, File 1 has data on

X and File 2 has data on Y and we would like to merge the riles to

gi.t jtrit I rormal ion on X and Y. Note that, In Section 1.3, such a

scenriuuo was labeled Case 1. The selection of "matching rocords"

within a packet Is typically based on a "measure of dissimilarity" by

which a "distance" Is computed between a given File I record and each

pott'litLal match In the supplementary fMle. A po'entlal match with
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the smallest distance Is chosen as the match that will. provide the

missing Y value to a File 1 record.

1.5 Two Basic Types of Mati.hing Strategies

Suppose that the age of an individual, Zl, say, is a matching

variable. Then, one may define a distance measure d, say, between

individuals I In File 1 and J in File 2 by the equation

_ cj = Izli - I (1.5.1) 1
For fixed I - 1,2, ... ., nl, one will then match one possible J" In

File 2 with It h record in File 1 if JO minimizes dlj over J. That

is, J" depends possibly on I and satisfies the restriction

d ,ij = min dij (1.'5.2)

lcj<n2

If the choice of JO Involveg no other restrictions, then the statis

tlcal matching strategy Is called "Unconstrained Matching". However,

there are typically additional restrictions subject to which one must

choose the optimal match j* from File 2. Matching data files with

the restriction that the varinnee covarlance matrix of data items in

each file be identical to the variance covariance matrix of the same

data Items In the matched file is an example of a "Constrained Match."

In zrder to formulate this type of merging mathematically,

dssume first 'or simplicity, that both files carry only n records;

that is. the common talue of nI and n2 is n. Let



aJ 1 If It h record in File 1 is matched with the jth

record In File 2 1 < 1, j S 11 (1.5.3)
0 If the I th record in File 1 is not matched with the

Sth record in File 2

Then, the following additional conditions will ensure that the

5 aforementioned preservation of moments Is achieved by not letting

more than one record In File 1 to be matched with the same record in

I File 2:

nI 1 = 1, forJ 1,2 ... ,n (1.5.4)

* n
SaIj = 1, for I = 1,2, .... n (1.5.5)

Now let dij denote, as in the case of a unconstrained match, a

5 measure of inter-record dissiriilarity given by the extent to which

the attributes in any one record differ from the same attributes in

I another record. Then the optimal constrained match minimizes the

"objective function"

n n
I J dij a1  (1.5.6)

Subject to the restrictions in (1.5.3) to (1.5.5). Clearly, this

extremal problem is the standard linear assignment problem in

"Opt imi zat ion."

A matching situation more typical of problems relating to policy

I analyses is a constrained merge of two files with variable weights

I
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in both files and an unequal number of records in the files. Let I

be the weight of the It h record in File 1, and let B be the weight

of the j th record in File 2. If" n I , n 2 are respectively, the number

of records In File 1 and File 2, then we minimize the objective function

In (1.5.6) subject to the following constraints.

n21
=n

a --= a " % 1 ,2 . .... n1  (1.5 7)

Sa - BJ, j= 1,2, ... ,n 2  (1.5.8)i=l i

n2

Y ai
an i~l J=1

and

aij > 0, V i and J (1.510)

It is clear that an optimal constrained matching strategy when

the Iwo files have unequal number of individuals is the solution of

a standard transportation problem in which the roles of the "ware

houses" and "markets" are respectively played by the records in File

1 and File 2 and the "cost of transportation" is the Inter-record

distance "di ". Existing algorithms to solve a linear assignment or

transportation problem can be used to complete the final "merge"

step, giving us the synthetic sample

S(X ,Y 1 < i < n,.

Ii -I i4 i-I
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5 where Y denotes the value of Y assigned to the It h record of File 1.

The sample in (1.5.11) may now be used to estimate a parameter like

U ' ' in (..I).

3 1.6 Criticisms of Statistical Matching

In Sections 1.4 and 1.5, we described the general form of most

matching techniques that have been used by Federal Agencies.

5 Matching records at the "packet" level means basically that the

random vectors X and Y are stochastically independent, given the

value of the common variables Z. In the particular case of a multi-

varlate normal distribution for W = (X,Y,Z). conditional independence

assumption is equivalent to the claim that the partial correlations

i among X and Y variables, controlling on the Z variables, are all

zero. This point was made first by Sims (1972) and repeatedly by

5 others since then. The conditional independence assumption is a

strong one for which convincing justifications has generally not been

offered. It implies that the relationships between X and Y can be

3totally inferred from X's relation to Z and Y's relationship to Z.
Sims (1978) stated that matching the files under such assumptions is

unnecessary. He also sketched an alternative statistical procedure

that uses the data in the two files to estimate, under conditional

I Independence, a parameter such as y in (i.i.i). Sims' alternative

awill be discussed further in Section 3.2.
Fellegi (1978) aad many other investigators have expressed great

caution about tie use or statistical matching because riot much Is

-I U

!9
I I iI I iINIW
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known about the accuracy of the estimates of the joint distribution 5
of W produced by synthetic files.

Notwithstanding these criticisms of statistical matching, there H
is no viable alternative statistical procedure that will, in general, I
provide better estimates of y than a synthetic file can offer.

Given this lack of good alternatives, especially when conditional

independence does not hold, the area of statistical matching is wide

open and both theoretical and empirical investigations to discover

the properties of synthetic data-files are in order. 3
1.7 Reliability of Synthetic Files

The precision of synthetic-file-based estimators of a given

parameter relevant to the population of W = (X,Y,Z) is affected by

various types of errors that occur while matching two files. To

discuss these matching errors, let us first restrict our attention

to the cases where the same individuals are in the two files, namely

Case I and Case II.

In practice, it is almost Inevitable in most matching projects

that some matching errors occur, even with the most sophisticated

procedure and the most careful execution of matching of the files.

These errors fadl iato two major categories:

(I) Erroneous match (false match) or linking of records that

correspond to different individuals.

(i1) Erroneous non-match (false non-match) or failure to link the

records that do correspond to the same individual.

gI
1 -.iI i I



:I

3 The reliability of the results of a statistical matching

strategy is often defined (Radner et al., 1980, p. 13) as one of the

3 {following coefficients:

3 (a) the proportion of the correct matches, that is. matches of

records -n the same Individuals.

3 (b) the proportion of erroneous decisions, that is, false matches

and erroneous non-matches.

These reliability coefficients are random variables because, in

3view of the terminological conventions of Section 1.2, a statistical
3matching strategy Is dependent on the data in the two files. The

sampling distribution of the reliability coefficients, either exact

3 or asymptotic (as the sizes of the files grow), are very useful in

judging the quality of a given matching procedure.

INow, we will discuss the reliability of a synthetic file in

Case III, where the two files contain very few or no overlapping

individuals. First, note that the definitions of error in the

results of matching, which have been proposed for Case I, are not

applicable to Case III because the linkage of records from the two

2 files that pertain to the same unit seldom occurs in Case [II. In

other words, almost all linkages in Case III are false matches in the

sense of the definitions given earlier in this section. In Case III,

§definitions of error and reliability which are tractable from a
theoretical perspective are unavailable at this time. In fact,

5 little theoretical work on the errors present in the synthelic files

I

....... Q. W_ -OWN W - _ U -4-4. A.
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of Case III has been done. Until now, the evaluation of a given

matching strategy in Case III has been done from an empirical point

of view. A case in point is the work of Rodgers (1984).

1.8 SumTnar '

In Section 1.3, three important cases for merging two files of

data were distinguished. Of these, Case I and Case II are relevant

when the same Individuals are represented in the two files. Case III

arises when only similae Individuals are present In the files. This

research is concerned with both theoretical investigations and

empirical evaluations of the quality of synthetic files in Case I and

Case 1II. We shall not discuss Case II in this thesis.

In Chapter 2, Case I is discussed at some length. A reiew of

known results for this case is given. New optimality properties of

a maximum likelihood matching strategy are established. Some small

sample and large-sample properties of the number of correct matches

with regard to this strategy are derived, shedding some light on the

reliability of the synthetic file arising from using th1e maximum

likelihood strategy.

Case III is the topic of interest in Section 3. The bulk of the

discussion in this Chapter is confined to matching two riles of data

that are sampled from a trlvarlite normal population. Thus, :f

(X,Y.Z) Is a three dimensional normal random vector, File I has data

on (X,Z), while File 2 has data on (Y,Z). Two strategies proposed by

Kadane (1978) and one strategy due to Sims (1978) are used to create

tJI
mI

------ -- -- -- - - ZNT
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3 syntA~eflc files out of' simuXated data on (XZ) and (YZ). These

synthetic files are then evaluated by comparing the estimates of the

3 correlation between X and Y provided by them with the eat itnates based

on unbroken data on (X.Y.Z).

I
I
I
I
I
I
U
I

.1
I
B

I
I
I



I
a
I

2. MERGING FILES OF DATA ON SAME INDIVIDUALS !I
A useful classification of situations involving statistical mat-

ching of data-files was discussed in Section 1.3. It may be recalled

that in the context of the two files having the same Individuals, this 3
classification scheme included two cases. Case I is the scenario

where no matching-variables z are present, while case II is the I
situation where matching-variables are part of the statistical model. 3
In this chapter, we shall discuss results relevant to case I only.

2.1 A General Model I
T

Let [U1 be a multl-dimensional random vector with C.D.F H(L,u)

and P.D.F h(tu). Let (Ui], i = 1,2, .... n be a random sample of

size n from H. We shall assume that these sample values got broken up

into the component vectors T's and U's before the data could be 3
recorded. Thus we do not know which T and U values were paired in the

original sample and the two files consist of the following data: I

File I - 2' " . xn'

which Is an unknown permutation of'T .T . -,T and

File2- Y, Y ' '

which is an unknown permutation uf U1 .... U,

...... ..... I.I
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5- i DeGroot, Peder and Goe (1971) call tis a "Brokeo Random Sample"

model for two files.

3Two types of statistical decision and inference problems arise

from observing a broken random sample. The first type of problem

I involves trying to pair the x's with the y's in the broken data In

3 {order to reproduce the pairs in the original unbroken sample. The

second type of problem involves making inferences about the values of

3 Jparameters in the joint distribution H(tu) of T and U.

This chapter will be organized into a review of the literature on

matching problems in Sections 2.3 to 2.5. followed by a discussion of

statistical properties of some matching strategies in Sections 2.6 to

2-9.

2.2 Notations

In this section, we Introduce most of the notations that will be

used in the present chapter.

(1) (U) will denote a multivariate random vector. It is assumed to

have an absolutely continuous joint cumulative distribution func-

tion (CDF) H(t. 2 and joint density h(t~u); the context will make

the dimensions of t and u clear. In particular, (U) will denote

a two dimensional random vector, with h(t,u) arid H(t,u) respoc-

tlively as the density and CDF of (T h (- and h (.) will

respectively denote the marginal densities of T and U and F(-).

Gt-) will be the respective marginal distribution functions.

The symbol g (.) will be the generic notation for the dersity

I
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function of the random vector 1. Without the suffix, g(-) will 3
denote a real-valued function,

(2) Let ( Tj), i = 1,2, .... n be a random sample from the population

T in
of ( ). Let Fn (x) = n I I(Tj!x) be the empirical C.D.F

based on the variables T I  ..... Tn . Similarly. G (x) will be
1'nn

the empirical C.D.F based on Ul, .. ' U2'

n
Let Rl i I (ri>T, ) be the rank of Ti among the variables

Ti .... , T, where I 1,2 . ... , n. Similarly, R2., ... , R

will devote the rank order of the variables U_ ... , U. 3
(3) Let p - (9(1), ... , p(n)) be a permutation of the integers

1,?. .... n. 4 will stand for the set all such permutations. 3
Also, let t" (1,2, ... , n).

(41 Let c>O. V 1 = 1,2 ... , n, define events Ani (cP,c) as follows:

A ni(p,) I [IU(p(R i) - Ull C] (2.2,1) 5

Let Ani(c) - Anj(y*,c), 1 1,2,. ... , n, (2.2.2) 3
A ni( An Op",O) (R1  = R21 ), i = 1,2. .... n. (2.2.3)

Let Vni(, C IAi t 1 ,2 n. (2.2.4)ni A (w,c)'

V ni(C) I IA ni =p , 1 1 2, .. n (2.2-5)

Vni = IA i = 1, 2, ... , n (2.2.6)

5) Let c(x,y) be the generic notation for a joint density of two

random variables T and U which are marginally uniform. Then,

.I-

B 'w
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define the constant X as J c(xx)dx, which is the density of the
0

3 random variable T-U evaluated at zero. For any fixed integer d,

define

I S nl ... ' S nd) where (2.2.7)

S = R - j* 3 - 1.2. ..... n.

Note that If

3k (T J-T k>) - 1(U -Uk>0), V 1 < j d and I < k < n

1 (2.2.8)

then we get the representation

n

S n3 I t k. j = 1,2, .... d. (2.2.9)

k=l

Let k = (lkv .... d (2.2.10)

3 Then,

In lk (2.2.1!)
kl

Let Kijk (T J-T k>c) (UJ-Uk>O) 1 <_ J, k < n

- < J, k < n (2.2.12)

E2.k %(U -_U >0 ) (T -T k>-c)

Let L = T-U and L = T -U where j = 1,2 ..... Let Ad be

the sigma-field a(W 1, ... - d) generated by the vectors
Ti

W = (U), 1,2, ... d. Let T,(O) be the generic notation for

the characteristic function of a random vector n, 0 being a vec

tor of dummy variables whose dimension is toe same as that of n.

IV
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Let 1k (Wl .... wd) be the variable k' when W I takes the

value wi, I = 1,2, ..., d.
n

Let (w. , ... , w) and S = k9l' ..... w ) be

respectively and S when W, = i, I = 1,2, ... d.

Let Td = Id(l ..... Wd) be the negative logarithm of the

mtulus of the characteristic function of 1d+l- (Wi' -- ' Yd"

2.3 Data-based Matching Strategies

Pairing the observations in the two data-files that were des-

crib-ad in Section 2.1 should be distinguished from zhe problem of

maiching two equivalent decks of n distinct cards, which is discussed

in elementary textbooks such as Feller (1968). One version of eard-

matching Is as follows. Consider a "target pack" of n cards laid out

in a row and a "matching pack" of the same number of cards laid out

randomly one by one beside the target pack. In this random arrange-

ment of cards, n pairs or cards are formed. A match or coincidence

is said to nave occurred in a pair if the two cards in the pair are

.dentical. Because the two decks are merged purely by charce and

without using any type of observations or other information about the

cards, one may describe such problems as no-data matching probles.

A i excellent survey of various vei[sions of card-matching schemes is

f..und In Barton (1958).

Suppose that N denotes the number of' pairs in the aforementioned

matching probii-m which have like? cards or matches. The derivation of

the probability distribution of N dates back to Montmort (1708). The



123
3 following is a summary of some of the well-known properties of N

(Feller 1968):

Proposition 2.3.1: If P[m] is the probability of having exactly m

I matches, then

U 1 1i

(i [m = ml 11 - 1 + - + ± ( + ,) m = 0,2, .. , n-i

I 
and

p 1
P[n] n1

(it) Noting that is the probability that a Poisson random

I variable with mean 1 takes the value m, we have the following

approximation for large n:

p -I3([i] ml

(Ili) For d = 1,2, .... , n. the dth factorial moment of N, namely

( (d) , is I.

As one nmig't expect, for certain broken random sanple models, it

pays to match two files of data using optimal strategies based on

such data. Several authors starting with DeGroot, Feder and Goel

(1Q71) have proposed and studied matching strategies based on broken

data. In Section 2.9, it will be shown that, for certain matching

strategies based on independent variables T and U the distributional

A properties of the number of correct matches are the same as those

mentioned in Proposition 2.3.1. In other words, as far as statis

tical properties of N are concerned, matching files of data on inde-

5 pendent random variables is only as good as no data matching in which

we randomly assign units in one file to the units In the other file.

- -_ -- A;
.4

| "l!&
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2.4 Repairing a Broken Random Sample

2.4.1 The Basic Matchiny Problems

Let us consier matching the broken random sample xl, x2 , ... ,

x n Yl ... Yn by pairing x i with y(i ' for i - 1,2, ... , n where

* z ((l),. .... p(n)) is a permutation of 1,2, ... , n.. As we seek a

y from t that will provide reasonably good pairings of the x's with

the 's. we need to clarify the fundamental role of q in the statis-

tical model described in Section 2.1. If we treat p as an unknown

parameter or the model, then the likelihood of the data will include

w. Fov instance, if T and U are jointly bivarlate normal with means

2 2
IV V2' variances O, a2 and correlation coefficient p, then the

2 2
log-likelihood function of V, p pie P, cs, C 2' given the broken

random sample, is

2?2
L(pp... . .... I n

"n 2 n 2 n 2
- log(l - .. log 2 - - log Cy

22 lg 1  2 lo 2

I n 22 n2

2 1.p2) =l 1 P)2/2 + (yi P2 2

n
2 p X (xI  1 H(y 02)/aI 2] (2.4.1)

A constant term not involving the parameters has been omitted In

(2.4.1). In subsection 2.4.2, we shall seek c's that maxlmlze the

likelihood such as this. On the other hand, some statisticians

would regard p as some sort of missing data and not as a parameter

I tv e 'M n . A
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5 of the underlying model. The problem of pairing the two files will

not arise in such situations. However, one may still want to do

statistical inference for other parameters of the moeiel based on the

broken random sample. Such issues sre not pursued in this thesis

I and one may refer to DeGroot and Goel (1980) for an approach to

estimating the correlation coefficient p while treating T as

missing data in the bivariate normal model.

3 2.4.2 The Maximum Likelihood Solution to the Matching Problem

We start with a bivariate model used in DeGroot et al. (1971)

TI which assumes that the parent probability density function of ( ) is

h(t.u) = a(t) B(u) exply(t) A(u)] (2.4.2)

where a. B, y, 6 are known but otherwise arbitrary real valued

3 functions of the indicated variables. Suppose now that xI. ... xn

and yI. "''. Y are the observations in a broken random sample from

a completely specified density of the form (2.4.2). If xi was paired

3 with y((i) for i = 1,2, ... , n, in the original unbroken sample, then

the jo'nt density of the broken sample wauld be

n n n n
H h[XiY(i)J [ [W x )][ C I B(yfl)exp[ y(xI) (y3i=l I=1 1=1 i:I

(2.4.3)

Thus the maximum likelihood estimate of the unknownl permutation W Is
n

the permutation for which X y(xI ) 6(yp(& ) is maximum. Wit.hout

loss of generality. we shall assume that the xi's and yj's have L.een

5 reindexed so that y(x I ) <.-. < 'y(x ) and &(y ) < ... < 6(y ).

I __ I _4
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T
Since (U) is assumed to have an absolutely continuous distribution,

with probability )ne, there are no ties among y(xl)'s or a(y)'s.

DeGroot et al. (1971) shows that the maximum likellhoo solut ion Is

to pair xi with ypi for i - 1 .... , n. In other words, the maximum

likelihood pairing (MtL.P) is p" = (1. ... , n).

In particular, if the density in 2.4.2 is that of a bivarlate

normal random vector with correlation p, then M.L.P,can be described

knowIng only the sign of' p. If p > 0, the M.L.P. is to order the

observed values so that x I ..< < x and yI < ... < y and then to

pair x I with y4 , for i m 1,2, .... n- If p < 0, the solution

is to pair x I and y (n+li), for I -- 1,2, .. n. If p = 0, all

pairings, or permutations, are equally likely.

Chew (1973) derived the maximum likelihood solution to the

(bivariate) matching problem for a larger class of' densities h(t,u)

with a monotone Likelihood ratio. That is, For any values t I , t2,

11 and u2 such that t < t 2 and u I < u 2,

h(t *u ) h(t ,u ) > h(t ,u ) h(t , u ) (2.4.4)
I I 2 2 1 2 2 1

As before, we shall assume that. the values x , , x and
1 n

y1 . , n In e broken randm sample are from a density h(t ,u)

-sat.fy Iig (2.4.4. Without loss, relabel the x's ind y's so that

x, . anfld Y < y Tlien porm , At lon y" (i.,.... n)

Is again the M.L.P.
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3 2.4.3 Some Bayesian Matching Strategies

DeGroot et al. (1971) studied the matching problem from a

Bayesian point of view as well. They proposed three optimality

criteria, subject to which one may choose the matching strategy w.

Before we state these criteria, we need some notation and definitions.

Let x, ..., xn andy, I y n be the values of a broken

random sample from a given parent distribution with density h(t,u).

- If x is paired with yT(I)' i = 1,2 ... , n, then the likelihood
function of the unknown permutation T is given by the equation

nL(,) n h(tiu ()) (2.4.5)

Assume that the prior probability of each permutation is Then
ni

the posterior probability that 9 provides a completely correct set

of n matches is

p(W)= Lt'w) I L(*) (2.4 6)

For j = 1,2 ..... n, let

(1) - IC4: W(l) = 1 (? . 7)

be the set of (n - 1)1 permutatlons which specify that x1 is to be

paired with y Using the definitions in (2.4.6) and (2.4.7), we get,i J,
the posterior probability that the pairing of x and yj yields a

correct match to be

PJ = X p(p). 1 c j <. n (2.4.i)

For itny two perniut at ions p and 4, in 4, lt

U

U. -
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K(w,* ) {i: t(i) = *(I)}

That Is, K(,*) is the number of correct matches when the observe

tions In the broken random sample are paired according to p and the

vectors in the original sample were actually paired according to .p

It then follows that for any permutation pEO, the quantity

M(,p) = I K( .,) p(*) (2.4.9)

is the posterior expected number of correct matches when 9 is used

to repair the data in the broken random sample.

Finally, let tl,n be the set of all permutations V such that.

Y pl #1 and Y Tln) = Yn"

DeGroot, Feder and Goel (1971) have proposed three optimality

criteria, subject to which one may choose the matching strategy w:

(1) maximize the probability, p(p), of a completely correct set of

n matches,

(ii) maximize the probability, pJ, of correctly matching x1 by

choosing an optimal j from {1,2, ...., n} and

(iii) maximize the expected number, M(y), of correct matches in the

repaired sample-

Assuming that the bivariate density of T and U was given by

tu 2
h(t.u) - a(t)b(u) e , (t,u) CR , the following results, among

others, were established by DeGroot et al. (1971):

(a) The M.L.P g" maximizes the probability of correct pairing of all

n observations.

Ui

.'$* -. ~ ~ F 'r -r 7 ~~' C~~L~c" yi~:.;--s~J/:
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(b) The probability of pairing x (X n ) correctly is maximized by5 pairing xI(X n ) with yI(Yn).

(c) The class of permutations 4l1n is complete; that is, given any

1permutation q4 . there exists a 4,E1 which is as good as

3 'p in the sense that M(*) > M(V).

(d) Sufficient conditions in terms of the data x1 , . . . .  x and ,

3 "' .,Yn for the M.L.P p" to maximize M(tp) were also given.

The results in Chew (1973) and Goel (1975) are extensions of (a)

through to (d) to an arbitrary bivariate density h(t,u) possessing the

5 monotone likelihood ratio. The "completeness" property in (c) implies

that the permutation p maximizing M(tp) satisfies I (1) = I and

EZp (n) = n, for n = 2. 3, tp - Wp . DeGroot et al. (1971) show that for

n > 3. E is not necessarily equal to the M.L.P #* by means of a

counter example.

2.4.4 Matching Problems for Multivariate Normal Distribut.lons

5 In our review so far, we have discussed optimal matching

strategies only in the case of bivariate data, one variable for each

of the two files. However, multivariate data are often available irn
T

both files. Suppose then that we have a model where (U) has a (ptq)

dimensional normal distribution with known variance-covarlance matrix

X. Let us write X and its inverse in the following partitioned form:

iL ~~ L 

!F

i t III/=
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where both 112 and Q12 have dimension p x q.

As before, we shall let xI. ... ' xn and X .... n denote the

values in a broken random sample from this distribution, where each

is a vector of dimension p x 1 and each y, vector has the dimen-

sion q x 1. The results to be presented here were originally des

cribed by DeGroot and Goel (1976).

The likelihood function L, as a Function of the unknown permu

tation p, can be written in the form

L(w) = exp[-J ' Q 1 (?.4.10)

since the other factors in the joint density of the sample do not

depend on y. If we again assume that the prior probability of each

permutation if Is ', then the posterior probability that w provides

(:ompletely correct set of n matches is given by (2.4.6). Thus,

maximizing p(p) is equlvale.t to waxiizlng L(w), or equivalently

minimizing

n

There is no simple way, in general, to describe the maximum likeli

hood solution.

However, if rank (112 z 1, then rank (Q12 1 and Q12 can be

represe-'ted in the Form Q12 = a' , where a and b are vectors of

dimensions p x 1 ai;d q x 1. If we let y(x.) = a'xi and S(X,) = Wb,

for i 1,2...... n, the T' will be the permutation that minimizes
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I = n
Q(Q) Y(xQ " [)) (2.4.12)

1=1

U_ Now, minimizing (2.4.12) Is achieved by arranging y(x1 )'s from

smallest to largest, arranging (y J)'s in the reverse order from

the largest to smallest and ther; pairing the corresponding elements

in the two sequences.

Suppose next that rank ( 12) > 2. Without loss of generality,

3 we shall assume that p C_ q and let vi = QlYi, for J = 1,2, ... , n.a 12%
Then, both x and v are p-dimensional r'ftors, and the maximum likeli

hood solution &" will be the permutation that minimizes

Q(') - (i)

Let D denot; the n x n matrix ((d j)) whose elements are dj xvj.

Then minimizing 2.4.14) is equivalent to minimizing

n n
Q() = I dij aJ

i=1. j=l

subject to the constraints

n
I i- j =1, for J 1,2. n,

I[
Y a 1, for 1 1,2,. n

j :1

a j 0 or 1,

Mi
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which Is a standard assignment problem with cost matrix D. Although,

there is no simple form for the solution of an arbitrary assignment

problem of this type, efficient algorithms ate available for finding

numerical solutions.

The permutation p that maximizes the expected number of

correct matches Is very difficult to calculate when p and n are

moderately large. No efficient algorithms are known. A Monte Carlo

study was reported by DeGroot and Goel (1976) in which they compare

~E
E and p" for p = 2 and 50 different covariance matrices I with the

sample size n = 3, 4 and 5. In all cases, the proportion of samples

2
for which Vp and (p" were identical was between 0.925 and 0.995.

Thus. It is not unreasonable to use y" even when the goal is to maxi

mize the expected number of correct matches. a
DeGroot and Goel (1976) studied two other simple matching

strategies which provide good approximations to the M.L.P WO or to
E

the rule y E We shall not discuss them here. In the rest of thisi

chapter, we shall div-cuss matching problems only in the biwarlate case.

2. Reliability of Matching Strategies f'or Rivariate Data

Consider a random sample of size n, (. .... fom a

bivariate population with density h(t,u). If the pairings in This

sample are lost before the entire data was recorded, we still can

()bserve the marginal order-statistics. In fdct, if xi, ., x and

YI' "..' Yn is the broken random sample ccrresponding to the

uncbserved sample on (U), then clearly the order-statistics
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I x (1) < ". <(n) of the x's are exactly the same as the order-stat-

Istics T(1 ) < ... < T(n) of the T's. Similarly, the order-statistics

Y(I) < Y(2) < ... < ¥(n) are the same as U(l ) < ... < U (n)  The

repairing of the x's and y's was introduced in Section 2.4. Thus

for each permutation o in 4, there is a matching strategy and the

3 typical merged file consists of the pairs

x(i) ,i = 1,2. ... , n. 
(2.5.1)

Some optimal matching strategies were discussed in Section 2.4.

Here, we are concerned with the quality of the file in (2.5.1).

Ideally, we would like to choose a * For which the file in

T
(2.5.1) recovers all the (U) pairs that we did not observe. It is

3 therefore natural to look at the random variable N__) the number

of correct matches due to T or, equivalently, the number of

unobserved sample points which have been recovered in (2.5.1). It

3 sho, id be pointed out that Myq), which was defined in Section 2.4.3,

Is different from E[N(w)] because tle former quantity is a posterior

expected value given a particular broken random sample and,

in th- latter, the expectation is taken over all possible samples.

Situations often Li,1se where it is not crucial that, after the

*two ftles are matched, the ra&t,!hcd pairs are exactly the same as the

pairs of the original data. For example, When contingency tables aref

V contemplated for grouped daZa on couitinuus variables T and U, we

may, in the absence of the knowledge of the pairings, would like to

Ureconstruct the pairs but would not worry too much as long as the
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U-value In any matched pair came within a pre-fixed tolerance c (a

non--negative number) of the true U-value that we would get in the

Ideal match of recovering all the original pairs. This type of

"approximate matching" was first introduced by Yahav (1982) who

defil ed c correct matching as follows:

Definition 2.5.1 LYahav)_: A pair In the merged file (2.5.1),

,(I) say, is c-correct if IU( (1)) - U[I] < c, where c > OSYW( 1)/

and U(I ] is the concomitant of X(i); that is, the true U-value that

was paired with X(1 ) in the original sample.

The number of c--correct matches, N(Wc), in the merged file

(2.5.1) is given by

nSn,c) I U < C (2.5.2)

Note that as c 1 0, N(p;c) converges (almost surely) to N(t;O), which

is a count of the exact (0-correct) matches. Hence N(W), the number

of correct matches due to op can be obtained from N((p;c) by formally

letting c = 0.

In the light of the definition of reliability of a merged file,

given in Section 1.7, the counts N(p) and N(te,c) are useful indices

whose statLstical properties reflect the reliability of the merged

file resulting from (p. We shall study these performance character

istics Ill thf f ollowing sect ions.

I i I I i I I fA==P;A I
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5 2.6 An OptImallj orty at' the Mayimum

Likelihood Parinr.

The known results about the optimality or the maximum likelihood

pairing w = (I. ... , n) with respect to some Bayesian criteria

I were reviewed in Section 2.4. Heve, we shall propose a new criterion

3 and establish that p" is optimal with respect to that criterion.

Consider the random variable N(V), the number of correct

matches which result when a permutation (p in 4 is used to merge

the broken random sample from a bivariate population. In this

I section, we shall show that Wp maximizes E(N(p)), the expected

number of correct matches, provided that the parent density h(t,u)

exhibits certain dependence structures.

We begin with quoting a very useful result on the exchange

ability of random variables from Randles and Wolfe (1979).

Lemma 2.6.1: If n and K(-) is a measurable function (possibly

3 vector valued) defined on the common support of these random vectors,

then

K( ) d, K(n)

) We now establish a representation for N(p,) as a sum of

3 c : ,xthia ab1 ternoulli random varLables, which wil be uksfijI IC'(;[.

,xt,.n1(ing e, isuts of Yahav (I'X )

The)rem 2.6.1: Let N(pc) ) nd Vnt(,i, V t)' as , 'in,- by ')' ) iri

(,'.2.4) respect ively. Then

M! A (3(C1.f ~4 . * .4 ~,(4~,'~/4l p~
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n U
V n 4,, N(Pt) = Vn (W,c), (2.6.1)

where the sutmnands are exchangeable random variables.

Proof: The order statistlc U(,(,)) and the concomitant U of' T(l),

used In (2.5.2) can be written in terms of ranks of T's and U's as

-- t~ 1 1. .2 }

n

U I u I (R (2.6.2)
[I] a~la (R -il)

Note that N(p.c ) Is simply a count of' how many pairs in the merged

file due to t. namely,

T( ) n ( 2

sat sfy

UU U [ (2.6.5)

If (2.6.5) holds for some i, then 3 a j such that

u(GP) U)I <C

In view of the continuity of (Tj,UI), this correspondence is one to.

one. Therefore, the count N(p,c) must be the same as the count given

by
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N(y,c) = I( (2.6.6)

t=1 (U((Rl))

Hence, (2.6.1) holds by virtue of the definition (2.2.4) of Vn.

Towards showing the exchangeability of the Vni s, note thaL the

original sample in (2.6.5) are independent and identically

distributed vectors. Hence, usitng the equal in distributlon

notation, we get

(W . .. * ) d (W 1  ... W ) (2.6.7)"I -- ' --an - -T'

where (a I ..., an ) is an arbitrary permutation of (1,2, ...., n).

2n n
4 Define a function f = (fl .... fn) from R to R by the equations

- V n

n n n
I if I (bbi>c) b (a -a >0) < X T (b -b > c)1 =i 1i iWJ I 1- 14 jI I

0 if otherwise

j n,?......i, (2.6.81

-U W where p is the matching strategy we started with and (a,b...,

2n
a b n) Is an arbitrary point In R

It follows from (2.6.7) and Lemma 2.6.1 that

S ~f(W1  W flU1  W 2 9

Fix j as an Integer in ti,2, ..... nj. Then, using (2.6 3) we see

tat fr(W ...... ) is the intlcator funct ion of 1he event

nn n

" 5 tl (|, Un) <t- U >C (T Tz0l A(11 tJ>i)

i. 1 l cx 1

U
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or, equivalently, in terms of the ranks RI .... R, of the T's and

the empirical C.D.F G n(-; of the U's,

n

a (U ) < tp(R )/n < G (U c) n a 1la fn a

Observtng that Gn (kin) U(k) k - 1,2, ..., n, we find

f(W,.... W ) is 1 iff IU U I <c. By tne same token,-j -al 1 ) - •
n l

f'(Wl .... V n ) is the indicutor of the event IU ((R1j)) - Uj1 I C.

So that f'1 Wl .. . Yn ) = Vnj(' ). From these facts and (2.6.9) it

follows that

(V n O ,C) . ... V (cp.C)

d (Vnl((P,)...... Vnn(,c)) (2-6.10)

Because (aI, . a.., n ) is an arbitrary permutation of 1,2, ... , n,

we conclude from (2.6.10) that tthe sunimands In (2.6.6) are exchange

able random variables.

Corollary 2.6.1: The number of correct matches resulting from the

matching strategy p has the representation

n
N(y) I I (R i lR (2.6.11)

Proof: Set c z 0 in Theorem 2.6.1. U

We will need the following special dependence structures for

the population density h(t,u). (see Shaked 1979).

Definition_(26.I: Exchangeable random variables TU arc said to
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be positive dependent by mixture (PDM) Iff the joint distribution of

T,U is that of g(tO,l) and g(102)- where t, and t2 are i.i.d

random variables, i0 Is a random vector which is independent of

and t2 and g is a Borel measurable function.

Definition (2.6.2): Exchangeable random variables T,U are said to

be positive dependent by expansion (PDE) iff the joint distribution

of T and U admits tne following series expansion:

dH(t,u) = [1 + X ain1 (t)n1 (u)] dF(t)dF(u) (2.6.12)

where F(-) is the marginal CDF of T or U, ai s are nonnegative real

numbers, and [n is a set of functions satisfying

5 i-J h(x) dF(x) = 0, i = 1,2, .... (2.6.13)

According to the Definitions 2.6.1 and 2.6.2, the dependence

concepts will apply only to pairs of exchangeable random variables.

It may also be noted that for most of the known expansions of PDE

distributions, the set of functions nk (-)) satisfies, in addition to

(2.6.13). the orthogonality conditions

n n (x) dF(x) = 6 , (2.6.14)

where k, t - 1,2, ..., and 6 kt is the kronecker delta.

We now give two examples to illustrate these concepts of'

dependence.

-I



140

Example 2.6.1: Let o. kl, t2 be l.1,d standard normal random

variables. Let p be any constant In the Interval (0,]. Define new

random variables

T - vI p • % 0

I
U V kY 2 + %(PL

Then, it Is easy to verify that TU are jointly normal and that. the I
definition (2.6.1) can be applied to T and U with the above choice

of 0 1 and 2" Hence, the standard bivariate normal distribution

with nonnegative correlation has the PDM property.

Also, Mardila (1970, p. 48) gives the following series expansion

For the blvarilate normal density

h(t,u) t [I + X k n k n k (u)] f(t) flu). (2.6.1')

k=l

where f(t) is the density of the univariate standard normal random H
variable and (nk(,) is a set of orthonormal liermite polynonomlals. 3
Thus, if p > 0. bivariate normal distributions possess the PDE

property as well.

Example 2.6.2: A class of bivariate densities due to Farlie Gumbel

Morgenstern is given by the formula

h(t,u) =1 * (1 2t)(l 2u), where 0 < t, u < I

*-A < a 1 (2.6.1b)

It is easy to check that T and U are PDE for a > 0 in (2.6.16).

Note that the expansion 2.6.16 has only a finite number of terms,

unlike the expansion for the bivariate normal distribution.

i I I ii
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We now prove that the PDM/PDE structures are inherited by a pair

of new variables obtained from a given sample by eomputing the same

function of the marginals. These results are generalizations of

theorems in Shaked (1979), whick, were prov,d only for n-?. However,

I Mmathematical induction does not help to show the results for an

arbitrary n.

Theorew_ 2.6.2: Let (Ui), I = 1,2, ... , n be a random sample from a

U PDM parent with density h(tu). Tixen, for any measurable function

Rn " _ R, the random vari.ables g(T1 ,T2 , ... , T ) andw n

g(U IU .... U ) are jointly PDM.

Proof: By hypothesis, the vectors (ot) are i.i.d, Furthermore, !flnce

PDM property is defined only for exchangeable pairs of random

5 variables. we nave

(T .'U (U .T ), I z 1,2,. ... , n (< if)

Equation (2.6-17) together with the independence of TU pairs yields

(T I, ... I T, U, ... I U) d (U1, U2. . . . . . U n T. . T

(2.6.18)

Consider the function K:R 2 n  R n defined by the equation

Ka . a ; b nh ) - (g(a ,I a ) , g(b ,..., b )I , n ' . .. n I'n I n

wht'r'e (a .. , a,,n b l . b. , ) is any point in RN . Applying t.ht

Flintion K to bot h sides of' (2.6 18) and invoking L mma P.6 1 w,, gel

I
MbiA~'~~ - A.*t- V~
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(g(T ... 0 T ), g(U I... U )) d (g(U ... U ). g(T T ))
n _ 1 ' n 1 n

(2'.6. 19)

Hence. (g(T), g(U)) is an exchangeable-pair of random variables.

The PDM property of (T i  U i ) 1,2 .... n further Implies

that there exist n .i.d. vectors (%Oi,%liE2 1), i = 1,2..... n and

a measurable function f such that

(1) For each J. tlj, 22 are i.i.d univariate random variables

and the vector 1O, is independent of t1, and 23'

(ii) For each J,

T= f( 1, Oj) and U = f(t2jt0j) (2.6.20)

Introducing the random variables,

t!2 tl'21

and

{; = ( 12 . . In' 22' ' -' k2n' o1 t on )  (2,6.21)

We find that and are i.i.d univariate random variables and N

is Independent of and % in view of the assumptions (I) and (it).

Note that (2-6.20) and (2.6 21) imply that

OT!) M (( 1, o1)' '... , ( In, On ))

Is a measurable function g', say, of and j;. Similarly, g(U) is

also the same function g" of the random variables and Hence,

by deflinition, g(T) and g(U) are PDM. [1

C V tA CA3 tj~~a..:x - A Sh'RA V~~~tp~
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5 The next theorem is similar to Theorem 2.6.2 except the parent

distribution has the PDE property.

Theorem 2.6.3: Let ( U), I = 1, .. , n be a random sample from a PDE
Uy

parent. Then, for any measurable function g:Rn 4 R. the random

variables g(T , . . .. Tn ) and g(U1 , ..., Un ) are PDE.

Pr>oo: The exchangeability of the joint distribution of g(T) and

g() has already been proved in Theorem 2.6.2 (see equation 2.6.9).

It remains to be shown that, when the joint density of each of the n

j copies of T,U admits an expansion of the type 2.6.12, the joint

density of g(T) and g(U) also admits a similar expansion.

Assume therefore that there exists nonnegative constants [a k

and a set of orthonormal functions Ink(*)I such that the joint density

of T and U is of the form.

dH(ti u ) dF(t I)dF(u )[l + X a k k(t )n k(u , (2.6.2;)

where 1 -1,2, .... ri.

For any real x, define the measurable set 
in Rn

A(x) x (x . n. ): g(x .. x ) < x)

I' nL" gx' ". ) n x)

Then, the distribution function Q, say, of (g(T),g(U)) is

n
Q(x,y) a ... I I . . I i dH(t u.) (2.6.23)

tcA(x) uEA(y) jzl

ii'i rig the exI)i t ns i fis In equdt. In (2.6.22) we get

21 4

i"t
I IiI
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Q(xY) Q(x)QIy)

n ca ) k ~ k(Y+k-=l

n) I I aka x(2) (x) (2)(Y)

2 k-1 %A kkj

- au " akl(n) , ()(n) ()

a . X a .. ak (l k
kl1 k =1I n 1.....n

(2.6.24)

n
where Q(x) - a ... I dF(ti)

AIx) i=l

(1) n

n

x k (X) =l k --- I nk t 1  dF(t i )

(2) n
x k, (x) n k . .[ k(t 1)nItt 2 )  11 dF(t I

A(x) izl

and

(n) n n
, (X) . . n n (t )  9 F(

k.. x il k Ii

2.6. 2vi)

Note that V k, 1,2. .... and V i = 1,2, ... , n the signed measure

induced by x k (x) is absolutely continuous w th respect to Q



so that there exists ((x) - the Radon-Iikodm derivative -
(1'....

of x )(x) with respect to Q such that

Ux (x Wx (t),( dQ(t) (2.6.26)
kit .... k Ik

1  ... kt

Hence, from equations (2.6.24) to (2.6.26) we get

-() ,(n)

dQ(x,y) = dQ(x)dQ(y) l + n X ak4I , ( x*k (Y)

k=1

l (2) (2)

+ er t 2 kl) hols akostaek 2 1 k we 2 1 esue ec 2ause
1 2

a =1 .. themsel aek n e-. He n . om l k 11 ( e

1 n

(2.6.27)

Repre3entation (2.6.27) holds almost everywhere (Q measure) because

Radon Nikodymn derivatives are defined up to sets of' measure zero.

Also, the coefficients in (2.6.27), being products of' the nonnegative

a k's. are themselves nonnegative. Hence, to complete the proof we

only have to show that the orthogonality conditions (2.6.13) hold for

the %I s of the expansion in (2-6.27)

For = 1,2, n, and I < kI .... k < ,

we have

U
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Lim x(X)
X-*+ kic, .... k

n nu
n. n k(t i ) n dF(t i

kI 1(t 1 )dF(t) 1M i2n nk (t 1  i= dF(t )]

By hypothesis {tnk(.)) are a set of orthonormal functioths on the

marginal distribution F(-) of T so that

I kl(t ) dF(t I) = 0 (2,6.28)

Hence, 5 ( (t) dQ(t) = 0 (2.6,29)

where t I 1,2, ...

and this completes the proof.

The following facts about bivarlate ranks are easy consequences

of Theorems 2.6.2 and 2.6.3.

Corollary.2.6.1: Let (Ui) be a random sample from a PDM (PDE)

parent. Consider the marginal ranks

n
Rl : Z I
it. (T >T

and
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I n
2U U 1 1

oi T and U respectively, where I = 1,2, .. , n. The pair (R l ) is
i I R1

PDM (PDE), i = 1,2, ... , n.

Proof: Fix I and define a function g: Rn H by the iquation

n
g1 (a,, ... , a n ) = I I(ai a )

and observe that

H gt 1 (TI, .... Tn), R21  = g1 (Ul, ... , U )

By invoking Theorems ?.6.2 and 2.6.3, the result follows. L

We need one more result before we establish an optimality property

of Wp".

Theorem 2.6.4: Let random vectors ( T), i = 1,2, ... , n, be PDM/PDE

and denote the ranks of TIU 1 among Ties and U j' by RIII respec-

tively. Consider the joint probability mass function

ij = P(R = 1, 8 = J), 1I i, J S n

of R1 1 and R2 1. Then, wiJ s satisfy the following Inequali'les:

V i.j, wi > 2w (?.6.3CM

Proof: By hypothesis, the parent distribution is POD or PDE. Accor

ding .o Coroliary 2.6.1, P 1 and F21 are a'so PDM or PD9. Conse

q,:enrly 11 and R are exchangeable randoo variables. Hence,

-i==_
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V ij = Iji, for 1 i.j<n (2.6.<j1)

To establish (2.6.30), first consider the case when T and U are PDM.

By Theorem 2.6.2, R and R21 are PDM. Hence, there exists a

distribution function Q(-) say, such that

vI = 0 w.(t) .j(t) dQ(t). I < i, j n (2.6.32)

where wj.(t) and w.j(t) are the conditional mass functions of R11

and R 21 given a value t from the Q-distribution.

It follows from equation (2.6.32) that

7 [(*I*(t)) 2 + (7v jt))2 _ 2w (Ut j (t)]

jWi M -W (.t)) 2d.(Qwj~)]d)t

~--

_ D ( t) - I t) dQ lt)

>0.

We thus obtain (2.6.30) when T,U are PDM. Suppose now that T and U

are PDE. Then, by virtue of Corollary 2.6.1, Ril and R21 would be

POE. R1 and P 21 are ranks that are based on independent random

variables, hence, R1 and R21 are both discrete uniform random variables

on 1,2, ... , n (see Randles and Wolfe (1979), p. 38).

As R and R21 have finite supports the series expanslo of Rll

and R21 will have a finite number of terns. In fact, Fisher's

i 'iV i i ii [ 21
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Identity (see Lancaster (1969), p. 90) holds:

1 1 n-1
=n- - - (1 + X akn (Mnk(j))

n n k=kkl

3 < .c 1 3 n (2.6.33)

where (ak) are nonnegative constants and Ink(-)) are orthogonal

functions on 1,2 ..... n. The representation (2.6.33) leads to the

following reasoning:

For 1 < 1. J 3 n,

wit 
+ 
Vjj -2wj 2 +  I ak(k(i))2 + I +

n-i n-i
Sak(nkj)) 2 2 - 2 1 aknklnk(j))

k=l kzl

=1 n-i
2 a k[r k(I) - nklUH ]
n k=l

> 0 (2.6.34)

Hence, we obtain the Inequalities in (2.6.30). An optimality of

property qp" can now be established:

Theorem 2.6.5: Let ( ). i=1,2, -. , n be as in Theorem 2.6.4.

Then, V U E
1

:

E(N(y)' < E(N(Pf))

a

U



Proof: In Corollary 2.6.1, N(4) was written as a sum of exchanieibl

indicator random varianles. Hence, using equation 2.6.11, we get

E(N(w)) = nP(R21 v (R1I)) (2.6.30)

n
I P(R21 = W(k)RI = )

k=l

n
nIk W(k)*

where w is the joint mass function of RII,R 2 1. Invoking the

Inequalities on wt in (2.6.30) we obtain

n

E(N((p)) < n I 2 (k + (k).Y(k) )12~k=l

n n

_2 k~l 2k,k 2k t(k),'k)

n

n PlP21 R 11

Which establishes the desired result. 0

To interpret Theorem 2.6.5, we first recall from subsection 2.4.2

that ip" = (1,2, ..., n) is M.L.P if the parent density has the
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monotone likelihood ratio (MLR) property. As demonstrated by Shaked

(1979). there is no general relationship between PDM/PDE concepts of

positive dependence and the MLR property. We can therefore state the

optimality of *" in Theorem 2.6.5 as below:

Let TU have a joint density that has MLR property. In addition,

- alt T and U be either PDM or PDE random variables. Let x1 , .. ,

Y7. ... , Y1 be a broken random sample from the T-U population. Then

the M.L.P To is an optimal strategy to match the x's with the y's

in the sense of maximizing the expected number of correct matches.

2.7 Monotonclt _ of (N(4-))

with Respect to Dependence Parameters

Repairing of broken random samples based on the available data

in two riles was discussed in Section 2.4. It was observed that

data based optimal matching strategies exist when data come from

populations having certain types of positive dependent structures.

It is therefore reasonable to expect an optimal matching strategy to

perform better when there is some kind of positive dependence in the

population than when the data in the two files are stochastically

Independent- Our objective In this section Is to present a precise

iccount of such intuitive results with regard to the maximum likeli

hood pairing Vg. To this end, we will draw upon the results of

Section 2.6. We begin with a definition from Shaked (199):

Definition 2.7.1: Let J be a subset of R. A kernel K defined on JxJ

is said to be conditlonally positive definite (c.p.d) on JxJ iff

I
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(i) K(x,y) = K(y,x), V x.y E J; that is K is a symmetric kernel.

(1i) Let m be any positive integer. For arbitrary real numbers

al. ... , am and for every choice of distinct numbers x1l, ...,

x from J, it holds thatm

m m m
X X K(x . x ) a > 0 whenever a I  0 (2.7.1)

i jl izl

It is pertinent to note that this definition is related to the

well known concept of a positive definite kernel, which is used in,

among others, the theory of characteristic functions. The nonnega-
m m

tivity of the quadratic form I I K(xI,x ) aej without requiring
M i l J :I

the condition X aI = 0 in (2.7.1) is a standard way of defining

positive definite kernels (Widder, 1941, p. 271). We shall now give

an example of a e.p.d kernel which will be used in the sequel.

Example 2.7.l: Let J {l._, ... , n), where n is a fixed positive

integer. To verify that the kernel K(x,y) I (x Y) is conditionally

positive definite on JxJ, let m be a positive integer. For arbitrary

real numbers al, ... , am and for every choice of distinct integers

S.. , i from J, we have

m m
X X K Bi ,) aa

= a:15:l

aB

tO
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aft

> 0 (2.7.2),

where we have used the fact that, in view of the integers i, ... I M

being distinct, 1i -4 iCf =B.
m

Note that we did not have to impose the condition X a 0 to

5 arrive at (2.7.2). Also, the FuA;ction I(x=y) is clearly symmetric in

x and y. Hence, It follows from (2.7.2) that K(xy) is positive

3 definite and, consequently, is also c.p.d.

We will need the following lemma.

§Lemma 2.7.1 (Shaked, 1979): Let T and U be PDM or PDE random vari

ables with joint distribution function H(t,u). Letting F(e) stand

for the common marginal distribution of T and U, define H (t,u)
0

F(t)F(u), the distribution function of T and U In the case of

independence of the variables. Then we have the ordering

E H (K(T,U)) > EH  (K(T,U)) (2.7.3)

0

iff K(.,.) is a c.p.d kernel, provided the expectations exist.

Theorem 2.7.1: Let the joint density of T,U have MLR property

(2.4.4). Let 1ioH be as in Lemma 2.7.1. If N N( *) is the number

of correct matches due to the M.L.P p, then

E (N) > 1. (2.7.14)

A A

=H

4,



Proof: It follows from the general representation of N(p) in

equation (2.6.11) that

EH (N) = n P H(R = R 21) n E H((K(RI,2)) (2.7 5)

where K(x,y) = I(X=Y )  Now, recall from example 2.7.1 that K(x,y) is

c.p.d. on the domain JxJ, where J = [,2, ... , n) is the common

support of RII and R21 It was established in Theorems 2.6.2 and

2.6.3 that RII and R21 are PDM (PDE) according as T and U are PDM

(PDE). Invoking Lemma 2.7.1, we therefore obtain

E H(K(R il 1 )) EH (K(R 'R 2 )) (2.7.6)

Under H., Fl, and F2 1 are independent. Also, these ranks are

marginally discrete uniform random variables on 1,2,..., n. Hence,

we get

EH (K(R ilR1)) 2 PH (R = R21

0 n

P(R k) P( , k)

# 1

) Ckl n

i/n . (2.7.7)

Equations (2,7.5) to (2.7.7) imply the desired Inequality:

E (N) > n

H M

-~~0 ~ .. . % N.. CVV.y' .. ks
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We conclude from (2.7.4) that y" provides, on the average, more

correct matches when the data in the two files come from certain

positively dependent populations than when they are independent. In

particular, this fact holds for the blvariate normal distribution

with positive correlation as well as for Morgenstern distributions

in Equation (2.6.14). where the dependence parameter a > 0. In the

light of Theorem 2.7.1, it is natural to conjecture that E (N), as a

functional of the distribution function H, is order-preserving with

regard to certain partial orderings of the space of all continuous

bivariate distributions which have fixed marginals (those of T and U)

and exhibit positive dependence. Although no proof of this conjec

ture is available at this time, we offer further evidence in support

*of this conjecture in the next two theorems.

The oem 2.7.2: Suppose that a broken random sample comes from the

family of densities given by the equation

h(tu) =1 + a (I 2t)(l-2u), 0 < t, u < 1 and 0 < a < 1 (2.7.8)

Then, Ea(N) is monotone increasing in a.

Proof: Note that in (2.7.8), a = 0 means T and U are independent

and we might say that the farther a is from 0 the more the positive

dependence between T and U. For this family, the marginal distribu-

tions of T and U are uniform on roI].

It fol lows from equiat ion ( 2 . 6.27) and Coroll1ary 2 .fi) t hat t he

.ilint probability function of the ranks R and Xi ('a) be can(nl

rally expanded as follows:

fKr
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wj tP(R =11 R21 = j)

2(1 +. (n) Lk k
2l k nkM j) 279

n k=n

where 1,3 1,2, . ., n and [n (-),n is a set of functions satisfy-

Ing the orthogonality conditions in (2.6.13). Using the expression

(2.7.9) for w,, we get

E 2 (N) n P(R = R21

nI

nnr

1 n n k (n k  )n 2 kn ( ))
1=1 k=1I

1* x (n )b nk k- ( )k~k(2.7.10),

n k=1

where, after change of the order of summations on i and k, we have

used nonnegative constants b k given by the equation

n
b k  (C k (1) 2, k . 1,2..... n

It follows from (2.7.10) that Ea(N) is a polynomial in a and hence

it increases with a, as a goes from 0 to 1.

Theorem 2.7.3: Suppose that a broken random sample comes from the

hivariate normal distributions given by (2.6.15), where we assume

S



I

1 5?
that the correlation parameter p is nonnegative. Then E (N) is

increasing in p.

Proof: It follows from equation (2.6.27) and Corollary 2.6.2 that

wj =P(R =1 , RI =J)

1 4 ) ( ) (3)

-2(1 k==l k k

+ n I () ( 2 4() .(2)
2 = kI ='2 k= 1 k I  2 k1 2

1 n n K n

(2.7.11)

where, for fixed 11z 12 ... is a set of otho-

gonal functions on [1,2, .... n}. Using the expression (2.7.11) for

rii, we obtain

E (N) nP(R I R2 1 )

-n

n ir

. .

U

I II Ii 1 i
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[n - n[ p X X (* M) 
1

nkll k =1 k

n 2 (2) 2
+ ( P I x*klfY M)

I =1 k 2=1 1=1 1'2

+

Cn CD CD n n

+-k=l II=l ... I I=1 " M'"*

k 1k 2= nj

(2.7,12)

wh3re the order, of sumations over I and kI , . . . ,. kn have been

reversed because the terms in the expansion (2.7.11) are all non-

negative. We conclude from (2.7.12) that E (N) is a polynomial In

p and hence It Increases with p as p goes from 0 to 1. 0

As we close this section, we shall state a result due to Chew

(1973) which somewhat resembles, though conceptually different from.

the inequality E () > 1 in (2.7.4). Recall the notation M(y) in

(2.4.9), which denotes the posterior expected number of correct

matches due to the strategy , Arguing that M(y) = 1 when p Is

randomly chosen from *. he proved the following result:

T heorem 2.7.3: (Chew, 1973): Let x I . . . . x and y, "'' y be a

broken random sample from a bivariate distribution possessing mono-

tone likelihood ratio. If x I < ... < x and y1 < y< then the
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posterior expected number of correct pairings using the M.L.P p" is

at least unity, that is

MO( O) > 1 (2.7.13)

It should be noted that the inequality (2.7.13) was derived

from a Bayesian perspective, whereas in our inequality (2.7.4) the

FIN
Vi, expectation is over all possible samples. Finally note tnat while

our comparison is between dependent and independent populations for

the M.L.P., Chew's inequality compares M.L.P with random pairing.

2.8 Some Properties of N(0_,c)

The maximum likelihood pairing. w*, was introduced in sub-

section 2.4.2 and some of its small sample properties were studied

in Section 2.7. Specifically, the behavior of E(N(W')) was discussed

while holding the sample size n constant and changing only the degree

of dependence in the population. We shall now fix the parameters

describing dependence in the population of (T) and allow n to tend to

infinity in order to study the behavior of N(V*,c). Later, in this

section, we shall present the results of a Monte Carlo study about

N(t',c) in which we vary the dependence parameters even as n takes

difrferent values.

in this section, the notations of Se o 2. te 'wed

'Freely. Recall that N(V") and N(ypt) have the shorter notations N

and N(c) respectively. We start with a review of Yahav (1982)'s

results concerning E(N(c)).

I
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Assuming that the distribution of T and U Is such that the 'on

ditional distribution of U given that T t Is (univarlate) normal

with mean t and variance 1, Yahav (1982) derived the limiting value

of 1in (c) = E(N(c)/n), as n - m, by using the representation (2.5.2)

in which the summands are functions of the order-statistics of

U ... ,Un and the concomitants of the order statistics of

Ti .. ., T . His proof relied on an approximation theorem

(Bickel and Yahav, 1977) about the order-statistics for the above

model. Furthermore, he reported the findings of a Monte Carlo study

For a particular case of his model, namely, T and U are blvariate

normal with correlation p.

First, we discuss the large sample behavior of N(c)/n in case of

samples from an arbitrary population. The properties of its expected

value are available as a consequence. Second, we indicate

how Yahav's simulation study of the small sample properties of p n(c)

can be improved upon. We shall then present the results of our own

Monte Carlo study of n (c) when n is small.

Theorem 2.8.1: For broken random samples from an absolutely

n listribution, Ncc) pr
ontinuous - p(), as n , m, (2.82)

where p(c) - P(F(T c) < G(U) < F(T4c)).

Proof: Let , Pecall the representation (2.6.6) for N(c) as
. .n n

a sum of exchangeable indicators:

n
N c) I A Ac) (2.8.3)
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It follows that

E(L ) = nP(Anl(c))/n = P(A nl()) (2.8.4)

Note that,

2 -2(2)

E(L 2) = n-2 [E(N(c)) + E(N(€))], (2.8.5)
n

where E(N(c)(2) is the second ractorial moment of N(c). Using the

exchangeable representation (2.8.3) agal.n, we get

E(L ) n [n (P(A ()A (c)) + nP(A (C)) ]In ni n2 ni
n

Let nl = i

n

2a 2 1,2 .... n, (2.8.6)

where the sequences tClI ) and [t2 i1 are defined in (2.2.12)

Using (2.8.6), we get

A (C) = (n /n < 0, n /n < 0) (2.8.1)

and

2 2

A nl(WA n2 (c f) r n ij/n < 0) (2.8.8)

A'.j~

I W
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Note that, given Wi = ), the infinite sequence

i12' Il3' ... ad inf.

is exchangeable. Hence, by the Strong Law of Large Numbers (SLLN)

for exchangeable random variables (see Chow and Teicher. p. 223).

a*s
n1l/n 4 E( 1121W ) as n-o (2.8.9)

where the conditional expectation is equal to F(t -c) - G(u ). It

followE from (2.8.9) that

aos
1n 1 1 ) G(U 1 (2.8.10)

We can show by similar arguments that

at s
Sla/n - F!T -c) -G(U ) (2.8.11)

a's
n 2a /n M(t) F(T Oc) (2.8.12)

where L 1,2.

Using the fact (see Serfling, 19bO p. 52) that a sequence of

vectors converges almost surely to a given vector ifr the component

wise sequences converge almost surely to the appropriate components

of the limit, we get from (2.8.11) and (2.8.12)

.4
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ln F(T 1 C) - G(U)

n~l1/n G(U ) F(T +C)

a.s
(2.8.13)

n12In FIT 2 C) G(U 2 1

q22 In  GO 2 ) F(T 2c)

It follows from (2.8.7), (2.8.8). (2.8.13) and the independence of

S(U) and (U2 ) that

P(Anl(c)) 4 i(c) (2.8.1P()

and

2
P(A (nlcAn() 2 () (c) (2.8.15)

Using (2.8.4), (2.8.5). (2.8.14), (2.8.15) it is easy to verify that,

as nba

E(L) (c)

and (2.8.16)
var(L ) -+ 0

n

It is well known that (2.8.1) implies the onvergeni:- In pr, tib t Iy

=In , (2,8.2). ,I

The to Ilowing coro 1 12.ry genera I Izes Yahav (198? )'s r:su It ,()nrern I[

. (c), the first moment of N()/n.

(ro1Lar1 a 8. : For p , 0,

-!



U

64

(i) ~ O~ 'r), as n--.817n

(it) E(N( c /n)p  it(c)] ,  as n,. (2.8.18)

Proof: The number of c correct matches can at most be n, the

number of pairs in the unobserved bivariate data. Hence,

- l N (&'-)
0 0 -- < I, V n 1,2, ...

In other words, {N(c)/n) is a uniformly bounded sequence of random

variables. It is well known that convergence in probability and L p

convergence are equivalent for such sequences. Hence, (i) is an easy

consequence of Theorem 2.8.1. It follows from (1) and Theorem 4.5.4

th
of Chung (197'I) that the p moment of N()/n converges to

[M(E)] . Hence (ii) also holds. II I
Note that no assumption about the conditional distribution of U

given T was made either in Theorem 2.8.1 or Corollary 2.8.1.

Yahav generated samples from a bivariate normal parent with mean

vectur (o) and covariance matrix( 2 /l 2 P2 M 2) ( 2.8.19)

p21(i p 2 ) l 2(l-p )

Note that In (28.19) the variances of T and U are functions of the

rorrelation of T and U because Yahav u -quires that the conditlonal

distribution of' U given T - t be iormal with mean t and variance I.

Jfl
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3 The limiting value of Vn (c) for his particular model was given by

the Integral

-f { -E)) - * - - ) dt(x) (2.8.20)
I/ I-; 7T.

He computed u(c) by numerical integration for c = 0.01, 0.05, 0.1.

0.3. He also provided Monte Carlo estimates of n (c), for n 10,

20 and 50 using the simulated data on T and U. The following table

is a tvpit.al exalmt lc from his tables.

Table 2.1 Expected Average Number of
c-Correct MatchIngs, c .01

(Yahav (1982))

P )1 10O(E)  P20 (C )  I50 (C )  ,

.01 .5864 .5326 .52752 .52269

.01 .1984 .1648 .12712 .11522

.10 .1512 .1058 .07600 .05912

.30 .1084 .0686 .03888 .02144

.50 .1020 .0582 .02720 .013,9

.70 .0960 .0614 .02616 .01051

.90 .0972 .0540 .02064 .00864

.95 .0976 .0496 .02144 .00829

.99 .0960 .0484 .02128 .00804

It Is clear from Table 2.1 that (c) and p(c) are decreasing
as p ranges from 0.01 to 0.99. However. one expects that an optimal

• ' strategy such as q9" has the property that Vn(c) as well as p(c) are

monotone Inlcreasing in p- The problem here is not with the M.L.P,

p, but with Yahav's model in (2.8.19) because, as the correlation

I
..... h. V : 9 9 *,. ** -*,
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II

changes its value, so do the marginal variances of T and U. To

rectify this problem, we assumed a bivariate normal model for T and U

in which the means were zero and the covariance matrix was

I4 (2.8.21)
P1

For each combination of four values of n, namely 10, 20, 50 and 100,

and twelve values of p, namely 0.00, 0.10 (0.10), 0.90, 0.95, 0.99,

a sample of size 1000 was generated from the bivariate normal popula-

tion using the IMSL subroutines. These data were used to obtain

Monte-Carlo estimates of n (c), where c was given the values 0.01,

0.05, 0.1, 0.3, 0.5, 0.75, 1.0. Furthermore, it is easy to show

that, for the model in (2.8.21),

t(c) = P(IZI < c/V2TY--T), (2.8.22)

where Z is a standard normal random variable. It is clear from

(2.8.22) that ji(c) is a monotone increasing function of p. Using

standard-normal CDF tables, i(c) in (2.8.22) was computed for each

combination of the twelve values of p and the seven values of c

mentioned above. We have presented thc estimated values of n (c)

and the limiting value p(c) In Table 2-2 to Table 2.8.

V

I I I I4ii I I~ f . . .
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Table 2.2 Expected Average Number ofU c-Correct Matchings, c =0.01

I.0 0106 C0. 05 0C). 02 (C 00l (.00

0.00 0.106 0.054 0.025 0.017 0.0080.00130090.2U.1 .0
0.20 0.127 0.068 0.031 0.018 0.008

0.30 0.138 0.075 0.034 0.020 0.008I
0.40 0.155 0.083 0.038 0.023 0.0080.00140050.4I.2 .0
0.50 0.199 0.109 0.051 0.030 0.008

0.70 0.?31 0.129 0.061 0.036 0.008
0.80 0.279 0.162 0.077 0.046 0.016
0.90 0.374 0.222 0.109 0.067 0.016

0.95 0-476 0.2'96 0.151 0.094 0.024
0.99 0.700 0.521 0.299 0.191 0.056

Table 2.3 Expected Average number or

c-Correct Matchings, c .0.05

0.00 0.127 0.076 0.047 0.037 0.032
0.10 0.134 0.082 0.051 0.040 0.032

0.20 0.149 0.093 0.056 0.043 0.032
0.30 0-161 0.099 0.061 0.047 0.032
0.40 0.180 0.109 0.060 0.052 0.040
0.50 0.201 0.124 0.074 0.057 0.040
0.60 0.228 0.141 0.U85 0.065 0.048
U.70 0.262 0.166 0.101 0.076 0.048
0.80 0.317 0.205 0.124 0.094 0.064
0.90 0.420 0.280 0.i74 0.135 0.088
0.95 0.529 0.368 0.237 0.186 0.127
0.99 0.769 0.631 0,459 0.377 0.274
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Table ?.4 Expected Average Number or

.-Correct Matchings, c 0.1

P V1 0 (C) "20(C) 1 50() V 10 0 (C) Wc)

0.00 0.154 0.102 0.075 0.065 0.056

0.10 0.160 0.110 0.080 0,069 0.056
0.20 0.177 0.121 0.087 0.074 0.064

0.30 0.189 0.130 0.093 0.080 0.064

0.40 0.210 0-143 0.101 0.088 0.072

0.50 0.234 0.161 0.112 0.096 0.080

0.60 0.264 0.181 0.127 0.108 0.088

0.70 0.302 0.210 0.149 0.126 0.103

0.80 0.363 0.258 0.182 0.154 0.127

0.90 0.477 0.347 0.254 0.218 0.174

0.95 0.594 0.452 0.342 0.299 0.251

0.99 0.839 0.7114 0.630 0.580 0.522

Table 2.5 Expected Average number of

c.Correct Matchings, c . 0.3

p VI 10 ( )() p 5 0 (c) V 1 0 0 (c) c)

0.00 0.255 0.208 0.184 0.175 0.166

0.10 0.2t5 0.223 0.195 0.186 0.174

0.20 C.284 0.237 0.207 0.197 0.190

0.30 0.305 0.253 0,221 0.211 0.197

0.40 0.334 0.275 0.240 0.229 0.213

0.50 0 363 0.304 0.263 0.250 0.236

0.60 0.401 0.336 0.293 0.278 0.266

0.70 0.455 0.382 0.337 0.320 0.303

0.80 0,532 0.457 0.403 0.386 0.362

0.90 0.670 0.593 0.540 0.519 0.497

0.95 0.802 0.733 0.689 0.674 0.658

0.99 0.978 0.968 0.961 0.961 0.966

I

I q X l i IV4 7II

4Wp
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Table 2.6 Expected Average Number of
c-Correct Matchings. c = 0.5

P 10 (oC) V 201(C) P501c (C) VO10 C) plC)

0.00 0.353 0.311 0.290 0.281 0.274

0.10 0.367 0.330 0.306 0.298 0.289
0.20 0.390 0.348 0.325 0.315 0.311
0.30 0.417 0.371 0.3414 0.336 0.326

0.40 0.452 0.400 0.373 0.362 0.354
0.50 0.485 0.437 0.404 0.393 0.383

0.60 0.528 0.478 0.446 0.435 0.425

0.70 0.591 0.536 0.506 0.495 0.484

0.80 0.675 0.628 0.594 0.584 0.570

0.90 0.811 0.773 0.752 0.744 0.737

0.95 0.917 0.896 0.888 0.885 0.886

0.99 0.998 0.999 0.999 0.999 1.000

Table 2.7 Expected Average number of
c-Correct Matchings, £ = 0.75

P P 10(C) P 20lC) P Col( ) )1 100 C) P(C)
S___ __ ____ ___

0.00 0.468 0.433 0.416 0.409 0.404

0.10 0.488 0.454 0.437 0.429 0.425
0.20 0.514 0.477 0.461 0.453 0.445

0.30 0.539 0.505 0.487 0.480 0.471
0.40 0.582 0.542 0.522 0.514 0.503

0.50 0.621 0.586 0.560 0.555 0.547

0.60 0.662 0.633 0.613 0.606 0.599

4 0.70 0.727 0.694 0.679 0,673 0.668
0.80 0.810 0.786 0.772 0.768 0.766

0.90 0.919 0.908 0.906 0.904 0.907
0.95 0.979 0.976 0.9T8 0.979 0.982
0.99 1.000 1.000 1.000 1.000 1.000

I



Table 2.8 Expected Average Number or
c Correct Matchings, c * 1.0 j

p V1 0(C) V20(*) ) (C) U (1 0(c) (

0.00 0.570 0.545 0.531 0.524 0.522
0.10 0.593 0.566 0.555 0.549 0.547
0.20 0.621 0,595 0.581 0.576 0.570
0.30 0.646 0.62? 0.611 0.605 0.605
0.40 0.690 0.664 0.650 0.644 0.627
0.50 0.729 0.707 0.691 0.688 0.683
0.60 0.772 0.753 0.744 0.741 0.737
0.70 0.830 0.812 0.807 0.805 0.803
0.80 0.898 0.889 0.887 0.885 0.886
0,90 0,970 0,970 0.972 0.972 0.975
0.95 0.996 0.996 0.997 0.997 0.998
0.99 1.000 1.000 1.000 1.000 1.000

Note that, as expected, vn (c) is a monotone increasing function 3
of p for each fixed c. Furthermore, the quality of the merged file is

quite good If' we want to recreate contingency tables with

intervals of size .Sa or more and the correlation p is > 0.5.

IPT
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2.9 Poisson Convergence of N(W)

Let us revisit, for a moment, the card-matching problem which

was discussed In Section 2.3. Some of the distributional properties

of the number of correct matches In randomly arranging one pack of

cards against another were stated in Proposition 2.3.1. In partic

ular, the well known approximation of the distribution of the number

of correct matches by a Poisson distribution with mean 1 was

mentioned. This Poisson approximation may be motivated by the

observation that the occurrence of a match tends to be a rare event

when the number of cards in the matching problem grows indefinitely.

Inspired by this result, it is natural to ask whether Poisson distri-

butions can approximate the distribution of the number of correct

matches due to data based matching strategies. The answer- is in the

affirmative in the case of the maximum likelihood pairing q-. Our

aim in this section is to establish the Poisson convergence of N((p")

Using the general representation in Corollary 2.6.1 for the

number of correct matches, we can write

N N(wp) I 1A (2.9.1)

1~l ni

where Ani = (Rli = Rpi), i = 1,2, ..., n are exchangeable events. it

follows that E(N) nP(A Zolutikhina and Latlshev (1978)

sket.hed a proof or' the fact that the expectation of' N converges T.) ti

constant as n tends to n* Their approachi starts with writ rig, [(Anfi

as the triple integral
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I_ i j exp((n-l)tn(s(xy,O))dodH(x,y)

-- M -OD 6=0

where s(x,y,O) P3 (x,y) + 2Vp'1 (x,y)p2 (xjT - cos20,

pI(x,y) Fx) H(x,y),

p2 (x,y) 0 (y) H(x,y),

and P 3(xy) 1 - p1 (X,y) - p 2 (X,y), V x,y E R 0 < 0 <y.

Using the well known method of Laplace (Bleistein and Handlesman

1975), they expanded this integral In powers of and concluded that
n

P(A ) z for large n, where the constant a Is given by
nl n

f [h(x.G- IF(x))/h 2 (G-I F(x))]dx (2.9.2)
-Ma

They concluded that, in large samples, E(N) z a.

In this section, we shall generalize the result of Zolutikhina

and Latishev (1978) by showing that the d t h factorial moment of

(d) d
N, E(N ), converges to a ,d > 1, under certain conditions on the

T
distribution of" (U). As a consequence, we shall obtain the weak

convergence of IN to the PoLIsson distribution with mean a.

We begin with the observation that the ranks

t =2H ' "(H R Hn ) are Invariant under

increasing functions of T and U respectively. For this reason, N is

also Invariant under such transformations. Without loss of general

Ity, w" t.ir-refore re)la,' T ;rid U by F(T) ainl G(J) rfspee'tively,



5 where FNG) is the marginal distribution function of T(U). This so-

called probability integral transformation allows us to assume that

T and U are marginally uniform random variables and that the parent

CDF, H(t,u), is the joint CDF of F(T) and G(U). Furthermore, theI 1
Integral (2.9.2) simplifies to a = J h(x,x)dx. We might recall

0

from Section 2.2 that this simpler version of a was called X. We

shall henceforth use these simplifications and seek to prove that N

weakly converges to the Poisson distribution with mean k.

Following Schwelzer and Wolff (1981), the joint CDF of F(T) and

G(U) will be called a copula. In general, a copula is denoted by the

symbol C(...) and the following Frech6t bounds apply to any copula:

2
max(x+y-l,O) c C(x,y) < min(x,y), V (x,y) E [0,1] (2.9.3)

However, for the purpose of deriving the distribution of N, we shall

consider only a part or the spectrum (2.9.3) of all possible copulas.

3 To motivate our ciiolce of the copulas, first note that, in this

chapter, only absolutely continuous joint densities are allowed for

T and U. This means that the extremes min(x~y-l.0) and mln(xy) are

ruled out because these copulas correspond to degenerate joint

distributions for T and U (Mardia 1970, p. 32). Second, Goel (i9Th)

has observed that p" (,2..... n) is M.L.P Iff the joint density

of T and U has the M.L.R property. However, M.L.R property neces

Tsarily implies that the distribution function of u must be such

that C(x,y) > xy. for all (x,y) in the unit square (Tong (1980).

p. 80). We shall henceforth dssume that the joint CUP of T arid U will

I.

~wbI

4i
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satisfy the inequalities

xy S C(x,y) min(xy), V (x.y) E [0,]. (2.9.4)

Note that, in (2.9.4), T and U are independent Iff C(x,y) !-- xy.

Positive dependence of T and U occurs when C(xy) > xy, for all x and

y. In the remainder of this section, the joint CDF of T and U will

be a copula C in the class (2.9.4) and the corresponding joint density

function will be denoted by c(x,y).

Since R 1 and R 2 are some permutations of (1,2. ..., n), we find

it convenient to use the notation W for realizations of R or R 2

The cormmon support of R and R2 is denoted by §, the set of n!

permutations of 1,2 ..... n.

We will now formally establish an equivalence between the card matching

problem and the M.L.P in the Independence case.

PrOposit-io-n. 2.9.,1: Ler T and U be independent random variables.

Then the distribution ef V (V *..,.. V nn) defined In (2.2.6) Is

the same as that of the vector 65 (61 ..... 6 ) where

6 = I , 1 1.2......n (2.9.5)ni (.Hl.i)
.1

Furthermore, the random variables 61, .... , n are exchangeable.

Proof: Note tnat the rank vectors

1 (.. Rln) n -- .....)Ran)
.-l . .i in --2 21...

are Independent because T and U are, by hypothiesis, Independent

random aa 'tables, and that R and R- are discrete unIfor-la on tp.

-,-

!



5 IThat is,

P(R= E and a = 1,2. (2.9.6)

As Vni's are indicators of the occurrence of matches, the

Bernoulli variables 6nl ..... 6nn in (2.9.5) can be looked upon as

3indicating whether R matches with I or not, i = l,2, ..., n. It is

clear that the common support of V and 6 is

n
A = ((a ..... a ):a I= or 1, 1=1,2. ... , n, a s n 1)

" 2 .9 .7)

Note that A has 2n n sample points.

Let a = (al. ... , an ) be a fixed but otherwise arbitrary point

I_ In A. Define the events

D(a.w) :1 a, ,  1.2, ..... n],

(2.9.8)

where E 4. Then, using the independence of R 1 and R2 and

(2.9.8) we get

P(V = a) P(1 (R a t , i - 1,2 .... n)

11 2

S P( (I i Pk(I )  a, . 1 1 1 n] 2 R

~H

E - a, 1,.......n .. n)

(R 0~(1))

(P zw(
1

)) 1.
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We now observe that the components of a dictate which positions

of p - (Y i), .. , (p(n)) must be matched or mismatched by any permu

tation in order that e D(a,T). Clearly, the number of ways in

which we can permute the integers 1,2, ... , n and produce 4's that

belong to D(a,p) depends only on the fixed vector a and the fact that

y is an arrangement of n distinct Integers. Hence the cardinallty of

D(a,y) does not change as p ranges over -t. In particular, D(a,p)

and D(a,p") have the same number of sample points, where

" (1,2. ..., n). Using (2.9.6), we therefore obtain

M'7 1E D(a, w)) P(R I D (a,qy)), V p F * (2.9.10)

The right hand-side expression in (2.9.10) is a fixed number depen

ding on (r and the chosen a. This means that in (2.9.9). we seek

the expectation of a degenerate random variable. Hence, we obtain

P(V z a) P(H IC D(a, p"))

-- P ( [(H l =C i ) =  a i . I = 1 ,2 , .. . , n )

P(6 A a) (2.9.11)

Because a was arbitrarily chosen from A, we t'inally infer from

(2.9.11) that

(VV d (. ) (2.9.12).. nI . . . nIl ni o.. . nn

V

mq i if i i--- -- -- 4T 4 ... .. - - -
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The exchangeability of 6l .... 6 follows from the fact that the

distribution of RI is uniform over *.

3It readily follows from Proposition 2.9.1 that, In the indepen-

dence case,

n n
Vni X ni (2.9.13)1 1 =1 i+I

n
In view of (2.9.13), if we let Z = X 61* then the exact as well

n

3 as asymptotic distributions of N(T") = Vni can be derived by
1=1

studying Zn, which is same as the no. of matches in the card matching

k problem. As stated in Proposition 2.3.1. the asymptotic distribution

of Zn Is Poisson with mean I. We now present another proof of this

I well known result. The novel part of our proof is that we establish

cartaln dopondence properties of 61. ... . 6n and consequently

derive the limiting distribution by using only the first two moments

I of Zn

Our program can be stated as below:

(i) Show that 6 's have a certain positive dependence structure.
ni

(ii) Invoke a theorem due to Newman (1982) to arrive at the Poisson

convergence of N in the independence case.

Ll We start with the definitions of some concepts of dependence of

random variables.

S

- Idt i~ i~t~tt,~~ttt,~ t.t -t3 ai =r~
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Definition 2.9.1 (Lehmann, 1966): x and x are said to be positive

quadrant dependent (PQD) iff

xP(x > x >x)P(x ) P(X 2 > x V x. x? C

(2.9.14)

Definition 2.9.2 (Newman, 1982): xI .... , xn are said to be linearly

positive quadrant dependent (LPQD) iff for any disjoint subsets A,B

of (1,2. ..... ni and positive constants a1 , ... , an,

X akx k and I akxk are PQD. (2.9. 15)

k-.A k-B

Defintion 2.9.3 (Esary. Proschan, Walkup. 1967): xI, .-.. xn are

said to be associated if[ for every choice of functions

" I (XI, ... ' Xn) and f2 (x I .... xn ) , which are monotonic inc -.;'slng

in each argument,

cov(f I(X1  .... xn), f2 (x. ..., x n)) > 0, (2.9.16)

provided fl(xl . . . . . . xn) and f2 (x1 . . . . . . xn ) have finite variance.

It is well known that association is a stronger property than

IPQD proprty of n random variables x1, ... , x n. We will now

establish that A .. ' in (2.9.5) possess a weaker version of

the [.PQD property.

L.emn a ? 9.1: F,)- k 1,2, .. . n 1,

k

6ni and 6nn are PQD. (2.9.17)

Proof: Fix k 1 , , n.-. Then, using (2.9.14), we see that

Q,
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I a ni and 6nn are PQD If

N i nl > Xl0 6 nfl> x2 P 6ni > xI) P(6 > x2 ) V x1 . x2ER

(2.9.18)

Because 6n' s are binary random variables we obtain I
1 P(6 nn = 0 : (2.9.19)

It is clear from (2.9.19) that (2.9.18) holds for any xl. provided

x2 < 0 or x2 > 1. Hence, It suffices to show (2.9.18) for

0< x2 < 1. However, If 0 < x2 < 1, then (6nn > x2) = (6 = 1).

NIt therefore remains to be shown that

P( a 6i t, 6 nn 1) iP( A 6 > t) P(6 nn 1)._ I
B f oV I = 01, ... , Ic (2.9.20)

By detfniton of 6 nt,

P( ni 1) = P(R = i) = n'(

(2,9.21)

and P(6 0) = 1 -

nIi n.

k

Writing P( X &n > t) In the formId id 1

I
=__='
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n n
P( a 6n > t. 6 n 0) + P( 6 > 1 t = 1)1=1 - nfl -11n

and using (2.9.21) we can rewrite (2.9.20) in a more useful form:

-; k k

SP( 6 > 216 = 0) < P( 6 An > 1n = 1),
ni nfl 1I=1ni n

L = 0, .... (2.9.22)

Note that. in (2.9.22), k is a fixed integer. For a given k,

we now fix the value of t and proceed to establish the inequality

In (2.9.22) by means of a combinational argument.

It is clear that we can express the event (Snn 0) or

n-i
as U (R = a). Hence we can write,

aK=l I

k n-I
( t 6 , 6 = 0) = U J (2.9.23)
t=l ni - nn a=1

where

J = ( 6 > I, = a), a = 1,2 . ... , n-i (2,9.24)
ni - Ina

Observe that. in (2.9.24), J 's are muLually disjoint measureja
able subsets of t. Let us now fix a = 1,2, ... , n-I as well. Then,

any permutation tp in Ja satlsfles cP(n) = a and (p(i), ... , w(n-l))

is an arrangement of the integers 1,2 ... , *-I, +I .... n producing

at least t matches of the type 0(1) = In the positions

I = 1,2, .... , k. On the other hand, any permutation p in
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5k
( ni > t, 6nn = 1) satisfies 9(n) = n and

(O(1) .... ,(n-1)) is an arrangement of the integers 1,2, ..., n-i

yielding at least t matches such as *(i) = i in the positions

1,2, ..., k. Because a * n, it is clear that

# a(J ) < ( ni , 6 1 , (2.9.25)

where #(A) denotes the cardinality of the set A.

Since aL, k and t were arbitrary choices, we get from (2.9.23),

Ac ' Ac
#( 6n > 1,6 = 0) < (n-i) #( . 6 > ,6 1)=1 i- nn - - nn

k = 1,2, ... , n-i; L. 0, ... , k (2.9.26)

Since R1 is discrete uniform on 9 It follows from (2.9.26) that

P( X 6 > t,6nn = 0) < P( A 6n >t'6nn = 1) - (n-1)

3(2.9.27)

Multiplying both sides of the inequality in (2.9.27) by n and using

(2.9.21) we establish (2.9.22), which implies that (2.9.20) holds. a

We now state two useful results due to Newman.

Lemma 2.9.2 Newman (1982): If x and x2 are PQD, then

a

I
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IK(exp(irx1 +1SX 2)) - E(exp(irx1 )) E(exp(isx 2)I 

SIrsl covxlx 2  for all r.s C R (2.9.28)

0

Lemma 2.9.3 Newman (1982): Suppose that x n' ., x are LPQD. Then

n n n
IYTl (r11 ... ,r) - n TV (r3 )I < I irkrtI Cov,xk.xI)

n=1 3 k=l 1=1
k< t

V r1 ... r m E R (2.9.29)

where 11's are given by

nIF . ... n ( e x p ( l I r)

nJ=l

T x = E(exp(i rx), 3 1,2 ..... n. 0

Suppose now that we choose the arguments rl, ..., rn in (2929)

equal to an arbitrary real number r, say. Assume further that

x, .. x are exchangeable random variables so that they have

rucommon characteristic function, namely Tx (r) and that the covariance

between any pair of the x js is equal to cov(xlx 2). It follows from

(2.9.29) that

(r) - 1  n nv xx (2.9.30)

,r 2n Irn cov~x12

This estimate for approximating the characteristic function of' x

J i=I
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5 Iby the product of the marginal characteristic functions of the x's

depends on the fact that x1 , . ... xn are LPQD. We now use Lemma

2.9.2 and show that, with regard to the variables &n .... Dann'

an estimate similar to (2.9.30) can be obtained under the weaker

version of the LPQD property which is given by (2.9.17).

Lemma 2.9.4: Let 6n' s be the Bernoulli variables in (2.9.5) and

n
let Z n j 6n%. Then,n I=I

II (r) - tn (rfl , n Irl2 cov(6 1 an 6nl 2 nl' n2

V n > 2. r ER , (2.9.31)

Proof: The exchangeability of 6 ... , & was established In

5 jProposition 2.9.1. Hence, we obtain

cov(6n ,6nj) = cov( 1nl 
6n21 ), V 1 J, (2.9.32)

3 t (r) E 6ni(r), Y J, (2.9.33)

Note also the well--known property that

I1 Yn (r)l !, V j and V r (2.9.34)

From Lemma 2.9.1, we have

k3
S 6 hi and 4 are PQO, V k 1,2, .. n-i.n I nn " ' "

In view of the exchangeability of 6nl , . 6nn, we can restate this

property of the 6 n 's as follows:

I
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Let A and B be non-empty disjont subsets of (1,2 ... , n) such

that B is a sintieton. Then

Y ni and X 6ni are PQD (2.9.35)

Fix n > 2 and consider the following finite sequence of statements:

p? (r) - 'Ym (r)t < M i1) 2 cov(6n6 )
mnl 2 nl' n2

& ni

V m = 2,3, ... , n (2.9.36)

Note that (2.9.31) is obtained from (2.9.36) by letting m = n. We

shall now establish (2.9.36) by induction on m.

By choosing A = (1), B = {2) in (2.9.35), we find that 6nl and

6 n2 are PQD. The Lemma 2.9.2 readily implies that (2.9.36) holds for

m = 2. Now, let us assume that (2.9.36) holds for m = 2,3, .... (n-i).

n n-i
Splitting )6 n as the sum of 6ni and 6nn, be infer the PQD

n-i
property of 6ni and 6 from (2.9.35). Hence we obtain again

ni nn

from Lemma 2.9.2 and (2.9.32)

l ~ ( r) - n-i (r) * '% r4{

r=1 ni n=1

Inl cov( 1n-i 6 6nn~ 
L

2 C

Inl (n-i) cov(6 .6 )(2.9.37)ni n2

Now, we shall invoke the Induction hypothesis that (2.9.36) holds for

i'

-- £ mo n



m = n 1. Using (2.9.33) to (2.9.37) we finally establish (2.9.36)I
for m n as follows:

IT n (r) - 6n (0)
6ni

(r)Y (r) - "T (01I

X 6i

ST n(r (r) t nn (r) rn lnn 6 nl

XII

sIrl 2 (n-1) cov(& 1 n' an2~

n-1

ni

< jrI2 (n-1) cov(6, 6n2) + Irl2 (n-l)(n-2) COV(6 6n2

Irl 2 coV(n a )(n.-l)(l

ni' n22

2 1 Ir{ 2 cov(6 an2 (2.9 38)

The proof of (2.9.36) is complete by our inductive argument and

(2.9.31) follows from (2.9.38). 0

I
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Our preparations so far in this section are adequate for the

purpose of establishing the Poisson convergence of N in the

independence case.

Theorem 2.9.1: Let T and U be independent random variables. Let

the number of correct matches. N. be given by (2.9.1). Then

N 4 Poisson (1), as n 4 m (2.9.39)

Proof: We obtain from (2.9.13)

N qZ ,n

where Z = XA . Using the exchangeability of 6 ni's, we obtain
-t 1=1 nh "

cov(6nl, 6n2) = P(R 1 IC 1,R12= 2) - [P(R 11  1)]2 (2.9.40)

Since P(R IRI =2) = I/n(n-l), it follows that
if 12

.11

n(n-l) cov(6n, 6n2) = - V n > 2,

and therefore

n(n-i) cov(6 nl n2) 0(1) as n-- (2.9,41)

The proof of (2.9.39) consists of showing that the characteristic

function of Z converges to the characteristic function of the

Poisson distribution with mean 1. In other words, we shall show that

'Zn (r) 4 exp(exp(ir) - 1), V r E R as n- (2.9.42)

n

To this end, Lemma 2.9.4 gives the followving estimate of the

{i



I
3 difference between the characteristic functions In (2.9.49)

Itn(r) - exp(exp(ir) - 1)1

SIT (r) - Vn  (r) IYn (r) - exp(exp(Ir) - 1)1
n &n n1

nln-1) Ir2 cov(An 6 + IYn (r) - exp(exp(ir) - 1)1
- 2 nn n2

~(2.9.43)

Now, using the distribution of 6nl given by (2.9.21) we get

n(r) a[1 + - (exp(ir) - 1)]
6nl

Clearly,

Sn (r) - exp(exp(ir) - 1), V r E R, as n - (2.9.44)
6 ni

It readily follows from (2.9.41), (2.9.43) and (2.9.44) that (2.9.42)

3 holds. Hence we obtain

Nor d
Z 4 Poisson (1) (2.9.45)

V n

which is equivalent to (2.9.39). 0

We now assume that the broken random sample comes from a

population in which T and U are dependent random variables. It

should be noted that extensions of some of the techniques used in

the proof of the Poisson convergence in the independence case to the

I
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dependence case are not available at this time. Specifically, no

proof of the counterpart of (2.9.17), namely

k
SVni and V are PQD V k = 1,2, ... , n-l, V o > 2

(2.9.46)

is known. However, direct verification of the association of

Vnl ... V has been carried out for n=2,3.4 when T and U have the

Morgenstern dIstributIoD given by (2.6.16). Since association of

random vau Y:0PS Is a mUch stronger dependent structure than

(2.9.46), it is natural to conjecLur- that Lemma 2.9.i holds even

when T and U are dependent.

In the absence of a valid proof of Lemna 2.9.1 in the depen-

dence case, we need extra conditions on the distribution of T and U

in order to derive the Polason convergence of N. The following lemma

will be useful in deriving the main result of this section.• S

Lemma 2.9.5: For a fixed d, let L = ~r and L = (LI , .-. , Ld),
.n n d

S and L are defined in Section 2.2. Then,

a.s
nL 4 L, as n (2.9.47)

Proof: Fix d > 1. .-t i clear from the definitions of , in

(2.2 -0) and the sigma-field Ad in Section 2.2 that the infinite

sequence

Id.1' d+2..... ...
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5 of d-dimenslonal vectors are conditionally 1.I.d given Ad' Hence,

using the Strong Law of Large Numbers for exchangeable sequences

(Chow and Teicher, p. 223) we get

1 n a.8
n-d Ik 4 E(Id~l IA ) (2.9.48)

k=d+l

In order to evaluate the limiting conditional expectation in

(2.9.4B), note first that, for j = 1,2, ..., d, T and U are

uniform random variables. Now,

E( d+lITj = tJ, U = u )

-= (t Tdl >0) - P(u - UdI > 0)

= P(T < t ) P(U < u

- t - uJ ,

L{J, (2.9.49)

Therefore, it follows from the definition of -d l .n (2.2.10) and

(2.9.49)

-(4+1 lAd) ('1 ,L2 ... Ld) (2.9.50)

Hence, (2.9.48) and (2.9.50) imply that

I n a.s

n-d I ] L, as n (2.9.51)
k=d+l

Also, d being a fixed Integer, we have

I
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1 d a-sj
n-dk k . as n (2.9.52)

Since,

in
1

the lemma follows from (2.9.51) and (2.9.52) 0

The following sufficient conditions will be used to prove the next

theorem.

Assumptions: In the notations of Section 2.2, let

(a) X < C (2.9.53)

(b) - I lL(e)l dO < e (2.9.54)

-- CD

and (c) PlY; ! t) = O(td) as t - V d > 1 (2.9.55)

Theorem 2.9.2: If Assumptions (2.9.53) to (2.9.55) hold, then

d
N - Poisson (k) as n ( (2.9.56)

Proof: Proof of (2.9.56) consists in showing that the factorial

moments of N converge to those of the Poisson distribution with mean

X, in other words,

K(N (d )  X d ,V d = 1,2 (2.9.57)

By the Fourier Inversion theorem,

= = .. - , , -:.io . . .x_ . . - .. 2
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Id..ipCS 0) =(2w)- " ". ()d

= = v V s (0) dG, (2.9.58)

where IS (e) Is the characteristic function of the d-dimensional

-n
random vector S defined In (2.2.7).

The Assumption (2.9.514) ensures that the Fourier Inversion

theorem can be applied to the continuous random variable L. Noting
1

that X = I c(xx) dx is the value of the density function of L at 0.~0
we get

k g gL(0) = (2vw - I L (t) dt

Since Lj = Tj - Uj. 3 = 1.2. .... d, are i.i.d, with their common density

function equal to gL it follows that

d -d
x= (2m) V L. (0) de (2.9. 59)

-CD -W~ -

Recalling the representation

nN( ') = [ ~n

i=l ni

from Corollary 2.6.1, we obtain

((d) (d)

E(N ) ) n P(AnlAn2 A nd),

(d): n P(S = 0O),1 . 0

i | n
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where n(d n(n -1) ... (n - d + 1).

For fixed d, it is clear that n (d) as n - '. It therefore

follows from (2.9.60) that, in order to prove (2.9.571, it is

sufficient to show that

Lm IA(d,n)I = 0, (2.9.61)

flko

where A(d,,) = ndP(Sn = 0) - d

From (2.9.58) and (2.9.59), we ubtain

A d n d(2w)_dt V -d
d,n) = n 2) . S (u)du-(2w)- I ... I tL(O)dO

-wr -w -n -Cw -wU

(2.9.62)

On making the change of variables e = (nu1 , ... , fu ) in the

first term of (2.9.62) and noting that

IS (0/n) = tL (e), we ge.

fd nir nw W C
A(dn) = (2w) -  ... J (O)de

-nw -n -n -m -w ~

(2.9.63)

For positive constants a and B, which will be determined

later, define four integrals as follows:

(1) J = - I T' L ( ) d (2.9.64)

-- 1
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5(it) 12(n) = J y. ['(e) - vY,(e)]d8 (2.9.65)

j '3~' (n - . (O)de (2.9.66)
8-n

n- n

(Wv 1J (n) =I ... I V (O)dO (2.9.67)

3 It iu easy to verify using these Integrals and (2.9.62) that

A(d~n) = (20) 1 J (2.9.68)I k~l

For appropriate choices of a and B, we will show that

Iik(n1 0 as n 4-~ , k I ,234

which will Imply (2.9.61).

Let c > 0 be a fixed number. Then, assumption (2.9.53) and the

expression (2.9.59) Imply that Y (0) is absolutely Integrable

on R d. Therefore. we can find a large enough a such that

SJill !s j I~j ITL(e)Ide

3< c/4 (2.9.69)

From Lenuta 2.9.5, we have

LM a -

which implies that (cf. Bhattacharya and Ranga Rao, 1976, p.4I4)

L n a
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the convergence being uniform on the compact subset

( : -ER dand le < a)

Hence, for the a chosen above, we can find n1 such that

-- - V n > nI ,

1i2(n)l < c/4 (2.9.70)

In order to show that IJ3 (n)l ) 0, we transform f to

r = 9n In J 3 and obtain

1 3(n) =nd I ... 1 S (r)dr (2.9.71)
n£ -

n

Note that S I is a lattice random vector so all its II

moments exist. Since (U) are i.i.d, it

follows from the definition of i in (2.2.10) that

E(S ) = 0 (2.9.72) I
_0 -

It was argued in the proof of Lemma 2.9.5 that, for all n > d,

td-. ..... In are conditionally i.i.d given Ad with mean

E(1 1 JlA d) = LV 3 d+!,.. n

It is easy to verify chat the dispersion natrices D(ijlAd).

J = d+l ... , n, are positlv definite. Moreover, for

j = 1,2 ... d, is degenerate given Ad and

I
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I D(h) - 1i, (2.9.73)

I 2
where a var(T-U) and I Is the dxd identity matrix.

The dispersion matrix of En is, for n > d,

I -

n
D(Sn) (n -)= 1  = nA

U
I(D I~3 jA E I=1 j~

(n-d) ED( I A 4  + (n-d) 2D(L)

We finally conclude that

NIS n (n-d)2 a2 1 = (ENlt  JAt)

(2.9.74)

is positive definite.

As the second-order moments of S exist, we expand Y S(r) around

-n
r=0 and using (2.9.72) obtain

log ) =t -(- D(S )r + 0(11111 ), as I1'1 -. 0 (2.9.75)

In view of (2.9.73), we obtain

lexp(logys (r)I < exp(- j 2 2 2 + Ojjrll2

3 as 1lrli - 0

U

iI
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Hence, there exists a constant B > 0 such that for n > d,

IV (r)I < exp(- 1 (n-d)2 a2 1!11 ),

V I1£i < B (2.9.76)

Now, 3 n2 such that V > n2, -< 8 so that we obtain using

(2.9.72) and (2.9.76)

J33(n)l < n J ... exp(- i (n-d) 2 2 111 )  r

n <rl<B

S_.J..12 expl- I1!11 ) d( (2.9.77)
(1j1 > ) d

It is clear that we can choose a large enough a in (2.9.77) such

that V n > n2,I

13 (n)I < c/4. (2.9,78)

Finally, to show that )J 4 * 0, we transform u = emn in (2.9.67)

and obtain

114ln)!< n d I I(s (u) du (2.9.79)

B<IuIJ<w -ni

In view of the earlier remarks about the conditional distributions

of 1I; .... In given Ad , we obtain for n > d.

IV (u) I !< aEdIV (u)j n-d (2.9.80)
~n d+ll(Wl,... , 1 1i -

where 1d+x(W1' . ., d ) is the value of 1di given

I I I

_- 4 - fflz-j~



'I

* 97

I 1) 1 - 1,2, ..., d. Since the characteristic function

V td+l(u) is uniformly continuous on the compact set

( u: 8 < Il C w) of R , It attains its maximum inside this set, say

I at u = u. Furthermore. has period 2w so that. for almost

all realizations (wI' ... Id ) '

sup II' (U)t < 1 (2.9.81)
- Iutsw ld4-l

Letting 'a= - tn td+l(U*)], we get from (2.9.79) and (2.9.80),
mE~f

iJ41 < nd Ad (exp(-(n-d);) (2.9.82)

sn K (ex((n-d) Ya

*|l

where

) . exp(-s) a dC(xj,y ) (2.9.83)

0 0

is the moment generating function of i* with a real positive

argument.

Now, using the Abelian Theorem (cf. Widder (1941), p. 181), we

obtain

te d P(?a<t)Lim sup t N.(t) < Lm sup[ td N(d+l)] (2,9.84)

By Assumption (2.9.55), the right-hand side of (2.9.84) is zero and

5 it follows that

I
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nd Mr(fld) 4 0, as n -

which Implies, in view of (2.9.82),

IJ4(n)I 4 0, as n - -, (2.9.85)

It follows from (2.9.69), (2.9.70). (2.9.78) and (2-9.85) that

Lim tA(d,n)I = 0

The convergence of factorial moments in (2.9.57) follows immediately,

which in turn Implies the Poisson convergence In (2.9.56) 0

The validity of Theorem 2.9.2 depends on whether the Assumptions

(2.9.53) to (2.9.55) hold or not. We shail now given some examples in

order to illustrate the fact that these Assumptions are not vacuous. 5
We start with a discussion of (2.9.53).

For any Copula C(x,y) on (0,11 2, one may define *2 (possibly an

infinite #) by the equation

2 1 x,y) dx dy, (2.9.86)

where Q(xy) = dC(xy)/dxdy Is the Radon-Nikodym derivative of the

Jonit distribution of (U) with respect to the product measure of T and

U (i.e., the Independent case). C(x,y) is a 2-bounded distribution

(with marginal uniform distribution) If *12 < +.

The class of * -bounded distributions is large, as is evident

from the following general result (see Lancaster 1969, page 95).

2 W
Proposition 2.9.3: If H(t,u) is a 02 bounded bivariate distribu-

I A
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5 tion with marginal distributions F(t) and G(u) then complete sets of

orthonormal functions nl,,n2i, i = 1,2, ..., can be defined on the

marginal distributions such that

dH(tu) = [1 + 1 li (t) n21(u)
] dF(t) dG(u) (2.9.87)

I l

and +2 = p: (2.9.88)

It may be recalled from (2.6.12) that, when all p1 > 0 in the above

canonical expansion of the joint distribution of T and U, we say T

O and U are positive dependent by expansion (PDR). It follows from

(2.9.87) that, when a copula C(t,u) is * 2-bounded, X in (2.9.53)

I can be evaluated using the orthonormality of (n as

I
X = J c(x,x)dx

0

= 1 + I P (2.9.89)

It follows from (2.9.88) and (2.9.89) that the finiteness of +2 and

X are related to each other. Specifically, since V I > 1,

the canonical correlations p1 < 1. we obtain

2

With regard to the Morgenstern distribution in (2.6.16), we obtainI
I
I

-'- 3
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Pt =
If lwJ

0 If i>1

where -I<cx<I. However, we have

1X I c(x,x)dx

0

=1+ 
1

3

which is finite. Similarly, in the bivariate normal distribution

given by (2.6.15),

In view of these examples, assumption (2.9.53) is not vacuous.

Bhattacharya and Banga Rao (1976) (pp. 189-192), gives conditions

that are equivalent to the assumption (2.9.54). We cite one here:

Let GL denote the nth convolution of the distribution of
L

U - T -U, where. > I. If there exists an integer m such that GL

has a bounded (almost everywhere) density, then the modulus of the

characteristic function of L is integrable on (-a,-)(that is

assumption (2.4.54) is valid) and vlee versa.

Another sufficient condition for absolute integrability of

t L() is due to Bochner and Chandrasekar (1949). If there exists

a bounded (almost everywhere density gL(t) of L = T - U and if its

characterlsti2 function 7L (0) is (real) and nonnegatlve, then

-- I
!U
_ .
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I UI IW() dO <.

SI We Illustrate the use of this sufficient (but not a necessary)

T
condition when (U ) has the Morgenstern PDF,

C(x.y) - 1 + a (1 - 2x)(1 - 2y)

Clearly. as lel !S 1. lxi < 1. ljy S 1. 3 a positive constant k

3 such that

C(x.y) < k. V (Xy) c[0,1]2

Note that

1-t

L(t) l z(t+y,y)dy, V t > 0
y=O

I By the symetry of C(xy) In and, It can be shown that

g(-t) gL(t), V t > 0.

Now, using the bound k for C(x,y), and the fact that C-1,1] is

the support of L, we get

= i 1-t

gL(t) < k IJ dy - 2k <
0

Hence, it follows that the PDF of L is (almost everywhere) bounded.

We now show that IL(0) is real and nonnegatIve V a > 0

It L(0) =E~ei(T-U)e = 1I + QI2

i 1 1

where. 1 :0 e (X-Y)O dxdy
0 0

l
U



102

with Z1 = I eIx%1
0

11 1
12 = I I e x-y (1-2x)ll-2yldxdy

1 1

with Z 2  1 e ix  (1-2x)dx

0

Hence. TL(O) 1ZIce)l 2 + a12 (O)12  0 if > 0.

Invoking Bochner's sufficient condition, we get J t~.(e)Ide < -,

Itf > 0. flowever, for all Q,

I ItL(e)tde = IZ (e) 2 de + = 7 IZ2 (e)l2

(2.9.90)

so that the two 1r Legrals on the right hand side must be finite when

0 > . It follows that, even when a < 0, 1 t$L(e)Ide < -. We con-

elude that (2.9.54) is valid for any member of the Morgenstern family

of densities. It may be remarked, in passing, that, In view of the

generality of the conditions of Bhattacharya and Ranga Rao (1976) and

Bochner and Chandrasekar (1949). (2.9.54) holds for many distribu-

tions of ().

. .
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5 Lastly, WO discuss the validity of (2.9.55). To be specific,

when da1, one can get the bound

her :1 : 1 - p(lp) , i (8/2) V a < a -C W, w x ~

wher PO- Po(w) 1 -x-y+ Cx )

Therefore.

1 (-)4i 2 EOIPi
I1 4(n,B)l . I n e-(-)snBP(1P] dxdy.

0 0

ni 4 -, where M " s) Is the Laplace transform of nj. A sufficient

condition for this to happen Is

P(P 0(1-P 0) S, t) = 0(t), as t 4 0 (2.9. 91)

Let 6(t) and 1-6(t) be the roots of the equation

P(1-P 0 t

It suffices to show, as t - 0,

P(P < 6(t)) = 0(t) and (2.9.92)

P(P 0 > 1 - AMt) 0(t) (2.9.93)

T
If' (0) is Independent, then the PDF ofP0can be shown to be

9P () =-tn(il-2x!)I(x)
0 [0,1]

. - A~. A .



So that (2.9.92) and (2.9.93) are valid when C(x,y) -C 0 where5

C 0(x,y) = xy. Also, if C(x,y) xy, then P 0(C) :. P 0(C 0) so that

F(P 0(C) :< 6(t)) :S P(P 0(C 0) <! a(t)) (2.9.94)3

Thus, usi~ng the exact calculations based on the Independence case,

It follows that

V C > xy. P(P 0 (C : 6(t)) 0 (t)U

TU
At this time, we are optimistically speculating that, when (U) are

dependent, (2.9.93) Is also true. We are yet to demonstrate that

the assumption (2.9.55) Is not vacuous for any d > 1.

After we derived the proof of Theorem 2.9.2, we discussed theI

Poisson convergence problem with Professor Persi Diaconis, who

commurnicated the problem to Professor Charles Stein. In his Neyman

lecture at the INS Annual (1984) meeting, Professor Stein outlined

an a&Lternative proof of the Poisson convergence using his well-known

theorem concerning the approximation of probabilities. However, we

have not seen any rigorous version of the proof yet.

4014
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1 I 3. MERGING FILES OF DATA ON SIMILAR INDIVIDUALS

I
Problems of statistical matching were discussed in Chapter 2,

Uwhere we assumed that the two micro-data files being matched consis-
ted of the same individuals. Moreover, the files did not have any

common matching variables. In Chapter 1, practical and legal reasons

3were cited ?or these assumptions not to hold In certain situations.
Suppose, then, we have two files of data that pertain to similar

U individuals. Allowing for some matching variables to be observed

for each unit in tne two files, we seek to merge the files so that

inference problems relating to the variables not present in the same

3 file can be addressed. This scenario was labeled Case III in

Sectio, 1. In this chapter,we shall first review the existing

literature on Case III, and then briefly discuss some alternatives

to matching in certain models in which the non-matching variables

are conditionally independent given the values of the matching

P variables. Finally, we will present the results of a Monte-Carlo
I

study carried out to evaluate certain matching procedures relevant

to Cdse III.

-!'
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3.1 Kadane'a Matching Strategies for

Multivariate Normal Models

Distance-based matching strategies were introduced In Section

1.5. The choice of distance measures in the matching methodology can

be motivated using a model where the unobserved triplet W = (X,Y,Z)

has a multivariate normal distribution. The set-up of the two files

to be merged is as follows:

File 1 comprises a random sample of size n 1 on (X,Z), while File

2 consists of a random sample of size n2 on (Y.Z). Furthermore, we

expect very few or no records in the two files to correspond to the

same Individuals. Statistically, this means that, for all practical

purposes, the two random samples are themselves independent. For

this reason, we shall denote the sample data as follows.

(Base) File 1: (XiZi),

(3.1.1)

(Supplementary) File 2: (YZ ), J = n+l , .. nl+n

Once finished, the matching process leads to more comprebensive

synthetic files, namely

Synthetic File 1: (XiY Z )1 i = 1, 2 . n

(3.1.2)

Synthetic File 2: (X3YjZJ), j = n1 +l1 . n Il+n2

where, Yj is an Imputed value of Y that comes from the original File

2 and X3 is an imputed value of X that Is taken from the original

File 1 by means of some matching strategy. We shall now review
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Kadane (1978)'s development of the matching methodology for a multi-

variate normal model.

3 Suppose that W = (XY,Z) has a multivariate normal distribution

with mean vector (kx.y,) and variance-covariance matrix

[Xxx Ixy Exz]

I lyx I yy lyzj (3.1.3)

L Yzx Izy izz

tThe p X anllb estiated consis-

:, tently using the marginal information on (X,Z) and (Y,Z) respectively

SIn the two files. However. E xy Is an unidentified parameter, because

the joint likelihood of the data on (X,Z) and (Y,Z) is free of the

matrix Ix". In fact. in the domain In which Zxy is such that the

mtrix 1xx xy is positive semidefinite, nothing is learned

Ufrom the data about Exy, except in a Bayesian framework, where
Exz,iyz are, a priori, dependent. Even in this situation, the

posterior distribulon of Ixy Is updated on]y through Ixz and Eyz"

3 Kadane's approach to merging File 1 and File 2 consists of the

following steps:

(i) Start with an imputed value of Ixy via some a priori distribu-

tion on the covarlance matrix 1, (ii) Complete Files I and 2 by

predicting the missing data, X or Y, using the marginal information

in the files, (iii) Match these "completed" files based on a
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distance measure between records of the 
two files, (iv) Estimate

parameters such as

y = I g(w) dF(wi , (3.1.4)

using the synthetic file resulting from Step (iII) and repeating the

Steps (i) through (iv) many times to find the sensitivity of the

estimates to the imputed value of I and finally weight the results

using the a priori distribution on I.
Some further details of the steps outlined above are as follows:

Suppose that a an imputed value of IXy is available. Then we can

assume that ixy Is known and complete the two files by means of condi-

tional expectations. Let Zab.c' for any letters a, b and c, be given
:abqc

byf

-ab.c = 1ab - cac xJ Xcb

Then the predicted value i. say, of a missing Y in File 1 is given by

Y=E(YIX,Z)

Ey +I x.+I (Z_(z)X (3.1.5)

Similarly, the predicted value, X, say, of a missing X In File 2 is

given by

X (XIYZ)
-l -1

Y-+ (Y-Y) + Xy zz (Z-J!z) (3.1.6)

= x + 1 xy.z 1yy.z - .y ~zz y

Using (3.1.3). (3.1.5) and (3.1.6), it is now easy to show that

(XiiZi) is multivariate normal with mean vector (X,I,!E) and

variance-covariance matrix

I i l -4' * .i~ f Ij4t~Y ' ' | " [ I,$ ~'



[xx 1j Jxz]

a1I A A 3  (3..

L zx A2 ZJ

AE1 I K 1 1

w h e r 2A i = I .z 1 XX .Z + I'f . ZX Zy X

A -1 1 K1 I I

2 mx xx. xyzz mm zz.xzx

+ 21 K~ I K- IIyX.z xx .: xx zz x zy.x

Also, the vectors (Xi*Y 3 ,Z3 ). J * n1.el, ... , nI n 2, have a commnon

multivariate normal distribution with mean vector (E-y9z and

5 variance-covuriance matrix

A At A;

A [4 5 1

where A4 X=-ILEAI1

xy~z y z y y.Y ;z y

U I I
Izyz~ z z.yz~
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A5-yy yy zyx.z + lyz zz.y

and A6 -Iz E 1 XE 1 3
yy.Z yx.Z z n=.y zX.y

Mote that the distributions given by (3.1.7) and (3.1.8) are singular I
because the predicted values V, and X J+n are linear functions of the

other components of the random vectors T = and

S X J+n,Yj+nl,ZjnI ) respectively, where 1 1,2, ... , n1 and

j = 1,2, ..., n2. In order to describe Kadane's procedures to match

the completed File 1, namely, iit ... %Tn with the completed File 2,

namely, UI, .. " n, let us first assume, for simplicity, that

n ln2=n. Starting with n records in each file, we will compute the
1"12'

differences

j i - j+n ,1 < i, j < n (3.1.9)

- A - Aj~n

in order to define a measure of dissimilarity between any pair of

records, one each from the two completed files. Suppose first that,

there exists a vector oF constants t = (tl, ... , n )' , say, and I and
Jn

3 such that

P(t'(T0 - i) 0) 1. (3.1.10)

In view of the independence of the random vectors T, and Uj, it is clear



that (3.1.10) cannot hold. Consequently, any of the vectors T - U

6is free of any linear relationship among its components. It follows

from this fact and (3.1.7) to (3.1.9) that the differences T - U3

1 < i, ! n are identically distributed, each with a nonstnaluar

multivarlate normal ristribution with mean 0 and variance-covariance

matrix U1 + 9 2' For any positive definite matrix A, a dissimi-

larity measure between T and U can be defined by the quadratic

, form

d 3j(A) i )'A(i 1 (.1

Also, dij(A) will be referred to as the distance between the it h record

of File 1 and the jth record of File 2. Various choices of A in

(3.1.11) provide different distance measures.

It may be recalled from Section 1.5 that a constrained matching

of the two files is obtained by minimizing

I n n
C = I Z d j a j (3.1.12)

subject to the conditions

n
E 5,j 1, V i1 1,2, . ,n (3.1.13)

JuJ~ n
a -1. V j=1,2, .,n (3.1.14)

and

5j a 0 or 1, V i andJ (3.1.15)

I
&A

____ _ _ {AsC ±u4
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If the d jIs in (3.1.12) are given by dij(A)s in (3.1.11) for some j
choice of A. then we obtain an optimal distance-based constrained

match. Note that this type of matching of the two files amounts to

solving a linear assignment problem. Sometimes, an optimal matching

may be obtained by minimizing (3.1.12) without requiring that the

conditions (3.1.13) and (3.1.14) hold. However, as reported in

Rodgers (1984), unconstrained optimal matches do not provide good

estimates of the distribution W = (X,Y,Z). We shall not discuss

such "unconstrained matchings."

It is Important to note that the aforementioned optimization

problem needs to be solved for each realization of the random

variables involved. Suppose then that iI and U have been matched

in a given problem. Then it might be natural to take (XI.YXj,Zi) and

(XIYj,Zj) as simulations of the underlying distribution. Now, the

parameter y In (3.1.4) can be estimated using one of the followit g

synthetic samples:

Synthetic File 1: (XI,Y1ZI), i= 1,2, .... n. (3.1.16)

Synthetic File 2: (X3. j.Zj). J , n+l . , 2n. (3.1.17)

where YT and X3 are values given by the matching procedure.

Kadane has suggested that matchings based on a fixed A in

(3.1.11) and the consequent Inferences based on synthetic files such

as (3.1.16) or (3.1.17) must be repeated many times and the results

must be averaged In some sensible way in order to explore the sensi-

tivity of our findings to the value of Xy we started with. We shall
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not pursue such issues as the actual choice of a prior on I and the

aforementioned sensitivity studies of inferences based on synthetic

data. However, we shall now discuss Kadane's choices of the matrix

A. which will be used in our Monte-Carlo Study of Section 3.3.

Kadane has advocated two choices for the matrix A in the defini-

tion of distance measure d j, which is given by (3.1.11):

(i) A - (Q1 + 2)- (3.1.18)

where Q1 and 92 are the matrices in (3.1.7) and (3.1,8); this A leads

to the so-called Mahalanob distance between the records of the two

riles, and

(ii) A 10 0 0 (3.1.19)

0 ' zz

In general, the relative benefits of these two distance measures

is an open question, although the empirical studies of Barr et al.

(1982) and other investigators reported in Rodgers (1984) indicate

that the Nahalanobis distance is worse than the distance provided by

(3.1.19) in the sense of distorting the bivariate and multivariate

relationships among the variables X. Y and Z. In view of this, we

shall follow Kadane (1978) in calling the measure induced by (3.1.19)

the "bias-advolding distance function." The special case of (3.1.19)

when Z has only one component will be discussed in the next

subsection.I
I

r
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3.1.1 Isotonlc Matching Strategy

We shall evaluate, in Section 3.3, Kadane's matching strategies

in the simple case when the triple W = (XYZ) has a trivariate

normal distribution. In order to facilitate such evaluations, we

now show that, in the special case of a scalar Z, the matching

strategy based on (3.1.19) can be implemented without using any

algorithm to minimize distances.

Assuming that Z is scalar and using (3.1.19) in the objective

function given by (3.1.12), C is equivalent to

n n 2
C E (Z i.-z Z2)2ai (3.1.20)
=1jl - 2j ai0

In a constrained match, ajj's are subject to the conditions (3.1.13)

to (3.1.15). Thus, (3.1.20) further simplifies to

C=n Z2+n Z2-2n ni t 1 i 2j J I Zl1Z2jaij

i-A~ j= _1 j=1

Hence, the minimization of distances reduces to maximizing I

n n
C' a ZIZj (3 .1)

izi J~l

subject to the conditions (3.1.13) to (3.1.15) on the aij's.

DeGroot and Goel (1916) show that, given the numbers z s and

S21' s, the constrained maximization of C' is equivalent to maximizing

z l1Z 2V(i) over all permutations V of the integers

1,2, ... , n. However, this latter extremal problem was encountered

- j F



in Section 2.4 when we derived the M.L.P ep" for certain bivariate

matching problems. It follows that, with regard to Kadane's distance

Umeasure given by (3.1.19), where Z is scalar, the optimal matching
strategy is to order the Z-values in the two files separately and

then match the It h largest Z i.n File 1 with the It h largest Z in

UFile 2. This explicit solution means that, if Kadane's matrix In

equation (3.1.19) is used to minimize distances between records of

the two files, then the synthetic File 1 is obtained by matching the

the X-concomitant or the I th order-statistic among Vs in File I with

the Y-concomitant of the it h order statistic amont Z's in File 2.

We shall refer to this strategy as isotonic matching of the two files

because the matching procedure is determined by the order-statistics

of the Z's in File l and the order-statistics of the Z's In File 2.

01 3.1.2 Sims' Matching Strategy

In the preceding subsection, it was shown that one of Kadane's

matching strategies can be simplified to the point of not using any

optimization algorithm in the matching procedure. Such simplifica-

tion is clearly not possible when the triple (X,Y,Z) has a multi-

dimensional Z . The whole idea of generating very large synthetic

data sets by actually minimizing a sum of distances over all

potential matches seems computationally profligate. One possible

alternative to distance-based strategies, which was suggested by

Sims (1978), will now be outlined.

I'
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Sims has stressed the importance of exploiting the local sparse-

ness or denseness of the sample data on the matching variables Z. A

dense region of the Z-space Is one within which we expect that the

distributions of X and T given Z change little. It is, at the same

time, a region within which we have many observations. Sims has sug-

gested that, within a dense region, any arbitrary matching procedure

will produce results that do not distort the joint distribution of

X, Y and Z. Regions which are not dense have few observations and,

within them, statistical matching becomes difficult. Sims felt that

In a sparse region, statistical matchings will almost certainly

distort the Joint distribution of X, Y and 2. He suggested that, in

such a region, we should either not match at all or go beyond

matching to more elaborate methods of generating synthetic data.

However, Sims did not spell out any specific alternative to matching

within sparse Z-regions.

In our Monte-Carlo Study for comparing Kadane's strategies with

Sim's. which will be presented in Section 3.3, we created ten bins U
in the Z-space, namely (--,-1.001, (-1.00,-0.75], (-0.?5,-0.50],

(-0.50,-0.25], (-0.25,0.001, (0.00.0.253, (0.25,0.501, (0.50,0.751,

(0.75.1.00], (1.00,+-). The conditional mean of X or f, given Z did

not change much inside the eight bins which were between -1.00

X4



5 and 1.00. Hence, these latter bins were considered dense bins and

the two bins In the left and right tail of the distribution of Z were

considered sparse bins. Within each dense bin, we randomly matched

records of the two files, whereas the Isotonic matching strategy of

I Subsection 3.1.1 was used in the sparse bins.

1 3.2 Alternatives to Statistical Matching

Under Conditional Independence

Several criticisms or the matching methodology were mentioned In

Section 1.6. It was observed that the formation of packets on the

basis of matching variables Z and the merging of records within each

packet imply that the non-matching variables X and Y are condit ion-

ally independent given the values of Z. Following A. P. Dawid (1979)

we shall use the notation X a I I Z to denote the conditional Indepen-

dence among the variables X, Y and Z.

Consider the situation in which we match the fragmentary data

provided by the files in (3.1.1). It may be recalled from Section

1.2 that any statistical model for this type of matching should imply

that the data in File 1 Is stochastically independent of the data in

5File 2. Clearly, such files of data cannot be used to statistically

test the validity of the implicit assumption that X a I I Z. Further-

more, Sims (1978) has observed that matching itself for the purpose

of, among others, estimating 1 in (3.1.4) is unnecessary. He pcinted

out that, when X I I Z holds, one can write

_MA'
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XZ YZ Z

dF(w) = dF (w) di w)/dF-lw). (3.2.1)

Xz

where F (.) is the marginal (with regard to W) CDF of X and Z and

the other terms on the right-hand side of (3.2.1) are analogously

dafined marginal distribution functions. The two separate samples in

(3.1.1) are adequate to estimate all the terms on the righL-hand side

of (3.2.1) by any of a number of statistical methods. In this sec-

tion, we will discuss scme alternatives to matching. With emphasis

on estimating the covariances or correlations between X and Y, we

shall first review a histogram-type alternative which was suggested

by Sims (1978).U

Suppose that we form a grid in the W space and estimate the

joint density of W by first counting the number of sample points in

each cell of the z grid. Let i index X-categories, j index

Y-categories and k index Z-categories. Let nij k be the number of

sample points In the (iJ,k)th cell and use the dot notation to I
define counts of sample points with regard to marginal distributions.

Thus. ve have

th
n .k  the number of sample points with X in the I category

and Z in the kth category,

th
n the number o sample points with Y in the j category
.jk

and Z in the kt h category,

andi =r the number of sample points with Z in the kt category.
..k 4

mI



Clearly.

-- n. .k n i n.k =  n. jk

and the data in the two Files given by (3.1.1) cau be used to compute

n Atk' n.k and n For all pcssible values of 1, j and k. Thus,

n I obtained from File 1, n from File 2 and n From the two
i .jk ., k

files together. Finally, for a known Function, g(.), say, let g(w1 jk
)

5 denote the value of g computed at the center, wijk of the (1,J,&

cell of the grid that we started with. Sims has suggested that we

could estimate y in (3.1.4) by the statistic

n.k n.,Ik
y --= g(w )  - (3.2.2)

i ,3,k ..k

With regard to y' in (3.2.2), theoretical properties such as the

asymptotic distribution of y (as the sample size tends to -) are

unknown at the present time. Also, practical problems such as the

choice of W-grid and the cells thereof, which would keep the number

of terms in the sum (3.2.2) computationally reasonable, have not been

Ustudied yet.
Sims (1978) stated that a procedure like the one leading to 'Y

in (3.2.2), which takes into account the implicit assumption of con-

ditional independence of the matching methodology, had the following

advantages over matching to create a synthetic file such as (3.1.16):

(a) the procedure lends itself to computation of standard errors

indicating the reliability of computations based on it

k
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(b) the procedure can be connected to the large statistical litera- j

ture on estimating density functions and multi-dimensional

contingency tables, and

(c) it is likely to provide more accurate results than matching. NI
Given the lack of work on the statistical properties of the alterna-

tives to matching, we can agree with the advantages (a) and (b), but

regard (c) as an undemonstrated speculation. We shall not discuss

y in (3.2.2) any further. Nor shall we elaborate the merits and

demerits of alternatives to matching and synthetic-data-based pro-

cedures. Nevertheless, in the next subsection, we shall derive the

estimators of parameters for conditionally independent normal models

without matching the files in (3.1.1).

3.2.1 Maximum Likelihood Estimation in Multivariate Normal Models

Using Two Files of Data

Consider the random vectors X. Y and Z, with respective dimen-

sions pl P 2 and p3" Suppose that W = (X,Y,Z) has a nonsingular

multivariate normal distribution with unknown mean vector

(!xYyYz) and unknown variance-covariance matrix X, which is

partitioned as in (3.1.3). Suppose that the sample data in (3.1.1)

is available and that n1 pl+P3 , n2 >_p2 +P3 . Note that, in view of the

nonsingularity of distribution of W and the fact that

1i . ~nZ are stochastically independent, the ranks of then ,-n+n2
1 2

matrices ( ., Zn ) and (Zn 1  .. ) are equal to P3 for

almost every realization of the Z's.

i i I I - .



In this section, we shall find the maximum likelihood estimator

of, among others, the covariances among the variables in the vectors

3 X and Y, without matching the files (3.1.1) btt essuming that

X YX{Z. The maximum likelihood estimation of parameters in

multivariate normal models based on various patteris of missing data

has been discussed in the literature. See, for example, Eaton and

Kariya (1983) Kariya et al. (1983), Anderson (1984) and Srivastava

and Khatri (1979). However, the pattern of data given by the set-up

(3.1.1) does not seem to have been examined. Note first that, under

conditional independence, the density of w can be written as

f (w;2) = f (Z;2f2 lXO 3 lEO) (3.2.3)

where 8 = (XxPyIzlxx ,Xxz,iyyIZ% (3.2.4)

and f iw(w) Is the joint density of W given by

f F (W) = (2) -(p]+p2+P3)/2 -

x etrt- 1 X1(w - YW (3.2.5)

etr being the exponential of the trace of a matrix. Also, f (.) Is

the marginal density functon of Z, f2 (.) and f 3(.) are respectively

the conditional densities of X and Y, given Z = z. It is well-known

(Anderson, 1984, p. 33 and 37) that fl, f and f also correspond to

certain multivariate normal densities like (3.2.5). Using the joint

normality of X, Y and Z, it is easy to verify that (3.2.3) holds iff

I
Is4L% II iI! I-* V%
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E~, =X V~' 1(3.2.6)I

It follows from (3.2.3) that the likelihood of the observed

data In the two riles given by (3.1.1) Is

L(O) L (9)L 2 (OL 3(e) ,(3.2.7)I

nil-n 2 I
where L1 (e) n f= F1(ziO) (3.2.8)1

11l I
and,

and 
nil n2

L3(0) n f f3QXilzi.O) (3.2.10)
- znl+lj

Taking natural logarithms of both sides cf the equation (3.2.?), we

obtain

3I

Where t1 (0) - log e(L1a (0)). V a = 1,2,3

Let and s denote respectively the mean and the matrix of'
z

corrected sums or squares and products of the data zit ... , z .

That Is,

n n2i=l

(3.2.12)

~ W ~ $4Xfl% %..rd: ~, Th% At%'% ~ ~a -



I
I

nl= 2 be123

z 1=1 -

Similarly. let i1 (12) and sI(a 2 1 be the mean and the matrix of

corrected sums of squares and products of the data zip .... z
(zn 1  ... ). Let, for any lower-case a, b and c, and any

* vector z,

Eab'z) = Ea + lab lbb l -

1ab.cX (3.2.13)ac cc cb

Then using the notations In (3.2.12) and (3.2.13), the equations

I (3.2.5). (3.2.7) to (3.2.10) and Theorem 2.5.1 of Anderson (1984)

(for the expressions defining f2 and f3) we obtain

t M 
- nl+n2

1 2 -1

+ tr1- s + (nl+n 2 )( Z - kz 1 1  - (z)' ]} (3.2.14)

2zz

n 11I
) z~)]

t92 (0) 2 - JOIi og li

.V + tri- xx.z[ I Ex-z ( EQ -x.

(3.2.15)

and

t (0) = - logly I

3 2

.... WA 
T''"-

IIIII
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nl+n2

+ tr(- 2 lyy.z[ I (YJ - Hy zlzjl)(Xj -)y.z(zJ))'31

(3.2.16)

Note that in (3.2.14) to (3.2.16), certain constant terms have been

omitted.

It is clear from (3.2.7) and (3.2.11) that the M.L.E of 0 is

obtained by maximizing I (0) over 0 for each a = 1,2,3 separately.

Moreover. this maximization is easier If we reparametrize the distri-

bution of W by means of

(- ztlzzxy yz xx.z'iyy.zBxyByz) (3.2.17)

where, apart from the notations that we have already introduced, we

have, for any letters a and b

Bab 1 ab 1 bb

and (3.2.18)

!ab Ha Bb- B b

It can be easily shown that there is a one-to-one correspondence

between 0 and n. Consequently, if we rewrite t (O)'s in terms of n,

then maximizing L(O) over 0 is equivalent to maximizing 1,(n) over n,

for each a = 1,2,3. The advantage of the transformation to the

n-space is that I (nW's are functions of disjoint portions of q.

In fact, 1t(n) is the same as 11(0), whereas it follows from (3.2.15)

to (3.2.]S, that

al



1 125

1 R l1l22 1 x- B ztxZ- -

tr(- 2-xz -t (x I-0' x x x Bx

I 1=1(3.2.19)

*and 
1) 22 'o

1yZJnlll- - 2 yz - 8yz zQ)(z3 - 1) Bzzj"

(3.2.20)

In view of Theorem 8.2.1 of Anderson (1984), it can be easily

shown using (3.2.14&), (3.2.19) and (3.2.20) that M.L.K of q is

given by

StIz nl+n2

B = L= I (XI - )(Zl - Zls

B =[ I-Yi Y( - -2l] (3.2.21)
j=nj*1.

Ow
Maw 0" ~4r
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yz = yz Z2U

ixx~ n (X I~ -xz B xz z)(X - 2 -B xz z

YY. I Y j yz- Byz j y j -*y B yz -j

Using these estimators and the relationships between e and viwe

obtain the M.L.9 of' 8 by means of' the following equations.

E~X xz + zH

'y~y -YZ E I

xxx xz Izz x~z + xx.Z(..2

xxz Bxz Izz

~yz B yz Izz

and ~ =

xy xzzz I

X - %A
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It follows from the above discussion that If we can justify the

assumption that X a I I K, then we can avoid matching the files In

(3.1.1) and estimate, among other parameters, Ixy, by means of the

equations In (3.2.22). Unfortunately, the two data files contain no

information regarding the appropriateness of this assumption, and

prior Information from other sources must be considered. The point

here is that, if the matching methodology Is based on assumptions

like X I Z, then we must look for alternatives to matching whose

statistical properties are known. Such alternatives are useful

especially because very little is known about the reliatility of

synthetic data-files.

It is important to note that (3.2.6) Is a necessary condition

even if W is not normal, provided only that X a I I Z holds and that

the appropriate moments of the distribution of W exist. Hence, we

can use the estimator jxy in (3.2.22) even for non-normal popula-

tions. We now show that Ex) is consistent for xy without assuming

that W has a multi--variate normal distribution.

Theorem 3.2.1 Suppose the joint distribution of W is such that its

second order moments exist and that the dispersion matrix, X. of W Is

partitioned as In (3.1.3). if X I Y I Z then X . given by
icy

(3.2.22), is strongly consistent for

Proof: We first note that and X are stochastlcally Independent
xz zy

because they are functions of the independent data In File 1 and

File 2 respectively. However, X involves Zi s in both files so

that the elements of the vector

*1
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~ 'I~*I~~)(3.2.23)U

are dependent. The almost sure convergence of the vector in (3.2.23)

will follow from the almost sure convergence of ixzizz,zy

individually (cf. Serfling, 1980, p. 52). In view of the similar-

ities of the proofs of the convergence of these matrices, we shall

only show that, as n - a, a = 1,2,
mC

as (3.2-24)

We obtain from (3.2.21), U

1 nl+n 2
Iz " Z ' I - Zz' (3.2.?5)

nI+n iZl - -

Recalling our assumption that the files in (3.1.1) are independent

random samples and that the vector Z has a finite dispersion matrix,

it readily follows that the Strong Law of large numbers (cf.

Serfling, p. 27) applies to independent sequences {Z1 } and {Z1 Zj} 3
Hence, we obtain, as n

nl+n2 a( 2
I ZI E(Z Z,) (3.2.26)

and

E(Z) (3.2.27

It follows from (3.2.25) to (3.2.27) that
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izz a ; ==

We conclude from our remarks earlier in this proof that, n 4

* - - a.s
(E (xz Z, Izy) a~4 (Xx,'zz' Izy (3.2.28)

I Let us now observe that

xy xzzz zy

is a continuous function of the random variables in the vector

(3.2.23). Hence, the strong consistency of xy follows from

(3.2.28). 0

3.3 An Empirical Evaluation of

Certain Matching Strategies

Several distance-based matching strategies for creating

synthetic data have been discussed in Section 3.1. Specifically, two

strategies due to Kadane (1978) and a strategy which was proposed by

Sims (1978) were mentioned. In this section, we shall evaluate these

three strategies, individually as well as in relative terms, in the

A special case where W (X,Y,Z), the unobservable vector, has a tri-

ouvarlute normal distribution. Before we discuss the Monte-Carlo Study

of the aforementioned strategies, we shall review some of the earlier

simulation studies of statistical matching procedures, which have

certain bearing on our study. A more cnmprehensive review of evalua

N
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tions of statistical matching procedures can be found in Rodgers (1984).

Barr et al. (1982) used, among others, a statistical model in

which a vector W = (XY,ZZ 2 ) had a four-dimensional normal distri-

bution with zero means, unit variances and various levels of

covarlances among the four variables. Altogether, these Investi-

gators generated 100 pairs of independent files, namely File I

comprising 200 observations on (X,ZIZ2) and File 2 consisting of 200

observaLions on Y, Z1 and Z2, for each of 12 populations, where the

populations differed with respect to the covariances of the

variables. Then, for each such pair of files, six statistical I
matches were performed, namely three constrained matches and three

uncon3trained matches. In each of these six matches, they used three

distance functions for each type of match. The first was a weighted

sum of the absolute differences of the two Z variables between

records of the two files and the last two were the Mahalanobis

distance and the "bias-avolding" distance, which were discussed in

Section 3.1. A sumnary of the findings of Barr et al. is as follows.

All three distance measures provided accurate estimates of the

variance of the Y variable when the constrained matching procedure

was used. They also found that all three unconstrained matching

procedures produced Y distributions that had means which were

significantly different from the corresponding population values.

The estimated covariances of Y with Zl,Z 2 , which wei'e computed only

for constrained matches, tended to be underestimated. With respect

to the most important question In the context of merging files,

.. 4t..l,'" *4. '- ,'L~ ,S,**~,
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namely the estimation of relationships between X and Y variables, it

was reported that, if the conditional Independence assumption was

Invalid, all statistical matching procedures provided estimates of

the X-Y covariance that were extremely poor. On the other hand, for

the cases in which the conditional independence assumption was valid,

all six procedures provided estimates of the X-Y covariance that were

generally quite accurate. Their simulations also Indicated that the

Mahalanobis distance measure produced less accurate matching than

A subjectively weighted distance measures.

As we mentioned earlier, our own Monte-Carlo study was confined

to a trivariate normal model. However, our findinoas were suffi-

clently interesting to justify their inclusion in this thesis. In

fact, some new facts about Kadane's bias-avoiding matching strategy

have already been mentioned in Section 3.1. Suppose, then, that

W = (X,Y,Z) is tri-variate normal with zero means and variance-

3covariance matrix

_= Ox 1 Iz 13.3.11

xz Pyz

Assume further that the following data is available for the purpose

V
" ' of estimating the three unknown correlations in (3.3.1):

i . .

2C

I
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File 1: (XiZi) I = 1,2, ... , n (3.3.2)

file 2: (Yi.Z ). j = ne~.,. , 2n (3.3.3)

In view of the discussions in Section 3.2, If the conditional

independence assumption X ]i Y I Z or, equivalently, U
P x 1Y=PZPY 3-3.4)

were true, then we can avoid merging the files in (3.3.2) and (133.3)

because File 1 and File 2 can be used to get the sample correlations

Pxz and pyz which in turn provide the maximum likelihood estimator

ofp , namelyxy Ix

Pxy = *xZ Pyz (3.3.5)

We shall say X and Y are conditionally dependent, given Z, iff

(3.3.4) does not hold; that is

Pxy 0 P xz Pyz

For the sake of simplicity, we shall consider hereinafter only the

conditional positive dependence case of the model in (3.3.1), namely -

Pxy > Pxz Pyz (3.3.6)

The complementqry case of conditional negative dependence. namely

Pxy < Pxz Pyz

can, however, be handled by methods similar to ours. We shall also

include the case when X f Y , Z holds mainly for comparing and

iR
01
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contrasting our results for the positive dependence case. Finally,

we shall evaluate matching strategies only from the point of view of

U estimating pxy. the correlation between variables which are not in

the same file, because File I and File 2 can respectively be used to

estimate the remaining parameters pxz and pyz"

It is clear that, if the condition X I Y I Z does not hold, then

we should not estimate pxy by means of (3.3.5). In such a case,

Imatching the files (3.3.2) and (3.3.3) for estimation purposes is an
alternative that we shall study in this section. Thus, If after

merging, File 1 becomes the synthetic File 1 namely

(xisY;.z1 ). I = 1,2. .... n (3.3.7)

where Y! is the value of Y assigned to the i
t h record in the process

of merging, then we shall use the synthetic data (XiY!).

i = 1,2, ... , n to estimate pxy"

UIt was mentioned in Section 1.7 that performance characteris-

tics, which can help us assess the reliability uf synthetic data

generated by independent files in (3.3.2), are not known. Given this

paucity, our program for an empirical evaluation of matching strate-

gies is as follows

(i) Starting with a known correlation matrix given by (3.3.1),

generats data froui the normal population of W = (X,YZ) and

create Independent files (3.3.2) and (3.3.3). Note that data

on (X,Y), which is typically missing in actual matching

situations, is available in simulation studies.I
I
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(ii) Using any given matching strategy, merge the two files created

in Step (i) and compute the "synthetic correlation", denoted

by p, which is defined to be the sample correlation coeffi-

cient based on the (X,Y) data given by the synthetic file

(3,3.7)

(iti) Compare Ps of Step (ii) with the following sample

correlations:

(a) PmW I . the sample correlation coefficient based on the

unbroken data (X1 ,YI), I = 1,2, ..., n which was genera

ted in Step (1). Observe that, if there is no apriorl

restriction on the model parameters in (3.3.1), then PmL

is the maximum likelihood estimator of p

(b) P2mt2 the estimator of p xy given by (3.3.5), which is

also the maximum likelihood estimator of pxy when condi-

tional Independence holds.

Because Pm1l and Pmt2 are respectively based on one

sample on (X,Y) and two independent samples on (X,Z) and

(Y,Z), we shall also refer to these as one-sample and two

sample estimates of pxy.

Using the aforementioned program, we shall evaluate Kadane's

distance-based matching strategies discussed in Section 3.1, namely

the isotonic matching strategy and the procedure induced by the

Mahalanobis distance, and the method of matching in bins, which, as

explained In Subsection 3.1.2, is an adaptation of a strategy due to
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Sims (1978). The synthetic correlations resulting from the use of

these three strategies will be denoted by Pal' ps 2 and ps3
respectively.

Our study has been conducted for three values of n, namely 10,

25 and 50. The values of the population correlation pxy which

are used, among others, to generate random deviates from the normal

population of W = (X,Y,Z), were chosen from the following categories: U

Low pxy: 0.00, 0.25

Medium pxy: 0.50, 0.60, 0.65, 0.70 (3.3.8)

High pxy: 0.75 (0.05) 0.95, 0.99

4Combined with low as well as high values of pxz and p yz t here were

ail15 choices of pxy from (3.3.8) such that the conditional

independence restriction (3.3.5) was satisfied. As remarked earlier,

these correlations were chosen mainly to provide a basis such that

the estimates of pxy resulting from the case of conditional

positive dependence can be compared with those resulting from

conditional independence. The fifteen values of pxy in the

conditional independence case were increased in such a way that the

positive dependence was achieved. Altogether, nineteen such I's

were selected.

For n=l0, W was generated 1000 times by using the IMSL

subroutines. The calculation of p1 was based on sorting Z's in

the two files, as discussed in Section 3.1.1. Furthermore, Ps2 was

computed for each realization by solving a linear assignment problem.

I
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The Ford-Fulkerson algorithm (Zionts, 1974) was used for this

purpose. The computational cost for solving assignment problems grew

quite rapidly with n. Therefore, only 700 Independent samples of

size n=25 were generated. A comprehensive examination of the results

for n=10,25, revealed P 1l and Ps2' the correlations corresponding

to Kadane's two distance measures, were, for all practical purposes,

identical (see Figures 3.1 and 3.2). In view of this and the high

computational costs, we compared only two strategies, the isotonic

and the method of matching in bins for n=50 (2500 independent

samples).

Four sunary statistics, namely the mean, the standard

deviation, the minimum and the maximum for the simulated data on

PmtlPmt2,Psl,Ps2,Ps3 were calculated for 34 2's selected

for the study. However, we provide these statistics only for a

representative collection of 15 X's in tables 3.1 to 3.7. For

each I and for any p, the first entry in the tables is the mean,

the second entry (in parentheses) is the standard deviation and the

third and the fourth entries are respectively the minimum and the

maximum. Also, the General Plotting Package at The Ohio State

University was used to plot the following pairs of estimates of p

( ) ps vs. p 2

SPsi vs- Ps3

psi VS. 53.l
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(iV) Pa1 Vs. P 1 t 2

(v) Ps2 vs. Pmt1

I (vI) ;s2 Va. Pmt2

(vii) Ps3 VS. Pmtl

(Vill) Ps3 Vs. Pmt2

Figures 3.1 to 3.20 provide an illustration of these comparisons.

3.3.1 Conclusions of the Monte Carlo Study

Tables 3.1 to 3.4 clearly show that the two estimates ps and

Ps2' provided by the isotonic matching strategy and the Mahalanobis-

distance based strategy, respectively have nearly Identical summary

statistics. In fact, an examination of all the results showed that,

for all values of n and X in our study, the estimates P1 and P 2

were the same for most of the realizations of W. Figures 3.1 and 3.2

provide the empirical evidence of this fact.

Now we shall discuss our results in the case of conditional

independence. As noted in Section 3.2, PaL 2 is the maximum likelihood

estimator of p., under this model, whereas P'mtl' the method of

moments estimator based on paired-data, Is computed for comparison

purposes. As expected, Pm 1 and pmL2 behave equally well on the

average even though the estimated standard error of Pmt l is consis-

tently higher than that of Pmt2" Furthermore the ranges of pmtl

I
X mh k*. . ~ 3 X ~ 4A 3 ~/.
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are consistently larger than those of ;mt2 (see Tables 3.1, 3.3 and

3.5).

For low correlation and each n, P 1 ," ps2 and P.3 compare well

with the estimates Pmtl' or P..2 as far as the averages are concerned

(see Tables 3.1, 3.3 and 3.5). However, the synthetic data estimators

have larger variation than Pmt2' as shown In Fig. 3.3 - Fig. 3.5.

Furthermore, all the synthetic data estimators have variation

comparable to that of pmtl as shown In Fig. 3.6 - Fig. 3.8.

For medium and high values of pxy, all three synthetic estima-

tors exhibit some amount of negative bias with regard to both mtl

and pm1 2 " Also, ps3, the estimator given by the method of matching

in bins, Is more negatively biased than ps1 and ps2' Tables 3.1, 3.3

and 3.5, Fig. 3.9 - Fig. 3.14 Illustrate these points. Again, ps3 is

worse than ps and ps2  These patterns among the five estimates

exist for any sample size even though the difference between

synthetic data estimators and PmL2 tends to decrease as n Increases.

Turning to the conditional positive dependence case, we first

note that Pmtl is a reasonable estimator of p xy, even though it would

not be available to the practitioner. On comparing pmtl with the

synthetic data estimators Pi. ps2 and ps3 and pmt2 we find

that these estimators perform very badly, in that all of them are

consistently underestimates and therefore heavily negatively biased

(See Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.15).

For each n, and low or medium choices of pxy, the synthetic data

estimators are comparable to pmW whereas for high values of pxy'

'aJX4 . 4A~ ~S4 ' " 44 " a
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the three synthetic data estimators have a definite negative bias

compared with p 2 " Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.16 -

Fig. 3.19 support this conclusion. Furthermore it is observed that

Ps3 based on binning is worse than ps1 (Ps2 ) as illustrated by

Fig. 3.20. However, the difference between the average Pmt2 and

;si, I = 1,2,3 tends to decrease as n increases.

Finally it must be pointed out that as the positive dependence

increases; le,pxy-PxzPyz increases, the bias in the three

synthetic data estimators and p M 2 increases. Tables 3.4 and 3.7

illustrate this fact.

Based on these observations, we must conclude that when

conditional independence model holds, the synthetic data estimators

do not provide any advantage over pmt2' the no-matching estimator.

In fact, they are slightly worse than the Pmt2" On the other hand,

in the case of conditional positive dependence, Pm12 and all the

3synthetic data estimators perform badly, the performance of
synthetic data estimators being slightly worse than that of Pmt2'

Thus estimators based on matching strategies do not seem to provide

any advantage over the estimators based on the assumption of

conditional independence and no matching. Thus for estimating pxy

in Case III models, the extra work involved in matching data files

is almost worthless. Further studles are in order for much larger

sample sizes to examine if this picture changes at all. We should

point out that It is possible that matching may be useful for

WN V,

I
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extracting some other Featurets of' the joint distribution and Further 3
Monte Carlo studies are warrented to explore this.

U
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Table 3.1 Summary Statistics of Sample
Correlations - Files with nalO Records

Conditional Independence Case

Pxx Pyz P xy PmE1 PM2 Psi Ps2 Ps3

0.0149 -0.0032 -0.0101 -0.0100 -0.0114

(0.3384) (0.1127) (0.3296) (0.329?) (0.3212)

0.00 0.10 0.00 -0.8170 -0.5844 -0.7575 .0.7575 -0.8506

0.8472 0.4675 0.8590 0.8590 0.7708

0.'879 0.5794 0.5457 0.5457 0.5105

(0.2212) (0.2006) (0.2337) (0.2337) (0.2396)

0.92 0.65 0.60 -0.6523 -0.4040 -0.6058 .0.6058 -0.6058

0,9753 0.9431 0.9626 0.9626 0.9681

0,6830 0.6638 0.6150 0.6151 0,5748

(0,1986) (0.1728) (0.2087) (0.2086) (0.2230)

0.3 0.75 0.70 --0.3369 0.1437 -0.3115 .0.3115 0.3396

0.9936 0.9609 0.9576 0.9576 0.9696

a

I "__ . . . . .... , I
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Table 3.1 (Cont'd.)

pxE yE pxy 'til Pm12 pul ps2 0s3

0.7863 0.7775 0.7302 0.7302 0.6874

(0.1445) (0.1182) (0.1522) (0.1522) (0,1731)

0.94 0.85 0.80 -0.3432 0.2058 -0.2367 -0.2367 -0.2367

0.9879 0.9566 0.9799 0.9799 0.9723

0.8937 0.8901 0.8252 0.8251 0.7789

(0.0764) (0.0625) (0.0994) (0.0995) (0.1236)

0,95 0.95 0.90 0.3247 0.3508 0.3821 0.3821 0.1796

0.9949 0.9814 0.9850 0.9850 0.9725

0.9448 0.9421 0.8758 0.8760 0.8238

(0.0419) (0.0317) (0.0741) (0.0741) (0.1063)

0.97 0.97 0.95 0.5329 0.7364 0.5027 0.5027 0.2123

0.9973 0,9910 0.9898 0.9898 0.9868
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I
U Table 3.2 Summary Statistics of Sample

Correlations - Files with n=10 RecordsIConditional Positive Dependence Case
I

Pxz Pyz Pxy P tl Pmt2 Psl Ps2 Ps3

0.9413 -0.0046 -0.0289 --0.0395 -0.0153

(0.0474) (0.1142) (0.3310) (0.3327) (0.3269)

0.00 0.10 0.95 0.5942 -0.5723 -0.8425 -0.8525 -0.8962

0.9959 0.5302 0.8897 0.8897 0.8181

1 0.8676 0.5729 0.5276 0.5108 0.4919

(0.0885) (0.2021) (0.2403) (0.2443) (0.2483)

0.92 0.65 0.88 0.2744 -0.5510 -0.6166 -0.6248 -0.6119

0.9914 0.9407 0.9621 0.9621 0.9621

1 0,9103 0.6771 0.6310 0.6262 0.5834

(0.0666) (0.1617) (0.2018) (0.2050) (0.2085)

0.93 0.75 0.92 0.4811 -0.2063 -0.3529 -0.3529 -0.2667

0.9918 0.9448 0.9722 0.9722 0.9892

I II 1IiiI
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Li

Table 3.2 (Cont'd.)

I-
PXZ Pyz Pxy 'mti Pmt2 PSI Ps2 Ps3

0.9558 0.7741 0.7188 0.7165 0.6687

(0.0353) (0.1153) (0.1573) (0.1578) (0.1781)

0.94 0.85 0.96 0.6288 0.2202 -0.2325 -0.2325 -0.1806

0.9960 0.9798 0.9707 0.9707 0.9535

0.9775 0.8871 0.8225 0.8211 0.7770

(0.0177) (0.0640) (0.1036) (0.1040) (0.1231)

0.95 0.95 0.98 0.8491 0.4165 0.2546 0.2546 0.0215

0.9986 0.9783 0.9922 0.9922 0.9727

II
0.9888 0.9439 0.8770 0.8774 0.8258

(0.0088) (0.0329) (0.0760) (0.0755) (0.1039)

0.-97 0.97 0.99 0.9184 0.6081 0.4432 0.4432 0.3541

0.9992 0.9919 0.9894 0.9894 0.9857

t-
lm

__ _ _ _ _ _ _ _ _ _ __ _ _ _A
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Table 3.3 Summary Statistics of Sample
Correlations - Files with n=25 Records3 Conditional Independence Case

Pxz Pyz Pxy Pm1t Pmt2 Psl Ps2 Ps3

-0.0068 0.0001 -0.0025 -0.0026 -0.0040

(0.2059) (0.0479) (0.2013) (0.2014) (0.2008)

0.00 0.10 0.00 -0.6576 -0.2851 -0.574C -0.5749 -0-6980

0.5450 0.2501 0.6196 0.6196 0.5087

1 0.5915 0.5788 0.5568 0.5564 0.5171

(0.1336) (0.1231) (0.1365) (0.1365) (0.1476)

0.92 0.65 0.60 -0.0576 -0.0890 0.0259 0.0259 -0.0468

0.8704 0.8189 0.8663 0.8663 0.8096

1 0.6859 0.6859 0.6620 0.6627 0.6111

(0.1087) (0.0935) (0.1096) (0.1097) (0.1216)

0.93 0.75 0.70 0.2953 0.2697 0.1828 0.1828 0.1642

0.9022 0.8959 0.8955 0.8955 0.8973

-
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Table 3.3 (Cont'd.)3

Pxz PY2 picy Pat1 pn,2 Psl ps2 ps3

0.7993 0.7934 0.7644 0.7643 0.7129

(0.0754) (0.0617) (0.0789) (0.0790) (0.0964)

0.94 0.85 0.80 0.4274 0.4778 0.4617 0.4617 0.27241

0.9380 0.9087 0.9139 0.9139 0.9241

0.8967 0.8961 0.8648 0.8643 0.8049

(0.0416) (0.0313) (0.0473) (0.476) (0.0676)

0.95 0.95 0.90 0.7057 0.7592 0.6580 0.6580 0.46141

0.9753 0.9636 0.9632 0.9632 0.9297

0.9479 0,9473 0,9117 0.9123 0.8485

(0.0211) (0.0154) (0.0327) (0.0326) (0.0605)3

0.97 0.97 0.95 0.8446 0.8638 0.7636 0.7636 0.5102

0.9874 0.9755 0 35 0.9735 0.9519
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I Table 3.4 Summary Statistics of Sample
Correlations - Files with n=25 Records3 Conditional Positive Dependence Case

Pxz Pyz Pxy P mn1 Pmt2 P5 Ps2 Ps3

0.9475 -0.0019 0.0058 -0.0372 -0.0004

(0.0222) (0.0439) (0.2061) (0.2038) (0.1989)

0.00 0.10 0.95 0.8249 -0.281? -0.5665 -0.5480 -0.7596

0.9857 0.1963 0.6904 0.6964 0.5557

3 0.8758 0.5857 0.5643 0.5149 0.5277

(0.0503) (0.1207) (0.1331) (0.1436) (0.1425)

0.92 0.65 0.88 0.605. 0.1442 u.1621 0.0617 0.0404

0.9738 0.83*4 0.8896 0.8896 0.8512

1 0.9143 0.6907 0.6627 0.6489 G.6190

(0.0361) (0.0851) (0.1058; (0.1093) (0.1125)

0.93 0.75 0.92 0.6844 0.2967 0.2949 0.2641 0.1829

0.9774 0.8876 0.8661 0.8642 0.9020

I

-I
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Table 3.4 (Cont'd.)

Pxz Pyz Ox¥ ;mtl Ml2 ;S1 2 ps3

0.9578 0.7931 0.7641 0.7539 0.7127

(0.0174) (0.0624) (0.0832) (0.0853) (0.0948)

0.94 0.85 0.96 0.8756 0.5449 0.3612 0.3647 0.3425

0.9893 0.9226 0.9181 0.9174 0.9128

0.9792 0.8956 0.8614 0.8543 0.7998

(0.0096) (0.0308) (0.0496) (0.0516) (0.0691)

0.95 0.95 0.98 0.9131 0.?693 0.6315 0.6226 0.5157

0.9959 0.9661 0.9647 0.9647 0.9413

0.9895 0.9475 0.9123 0.9139 0.8499

(0.0042) (0.0158) (0.0339) (0.0336) (0.0584)

0.97 0.97 0.99 0.9685 0.8769 0,7182 0.7352 0.5685

0.9972 0.9833 0,9769 0.9849 0.9773

... .

S..

r . ~ ~ -' ?~L .IJt..-$bAW ~ ~ a ~ A t ~ ' l. A~% S V W l . S A
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Table 3.5 Summary Statistics of Sample
Correlations - Piles with n-50 Records5Conditional Independence Case

I
Pz PYZ PXy PMkl PniL2 PalPa

-0.0004 -0.0003 -0.0019 -0,0044

(0.1436) (0.0242) (0,1474) (0,1445)

0.00 0.10 0.00 -0.4381 -0.1663 -0,4872 -0.5205

0,4746 0,1244 0.4398 0,474

0.5936 0.5952 0,5823 0.391

(0,0916) (0,07Q4) (0,0909) (0.0959)

0.92 0,65 0,60 0,2530 0.2219 0.2242 0.1098

0.8377 0-8103 0,7998 0.7873

I 0,0950 0.6953 0.6807 0.6279

(0.0756) (0.0612) (0.0709) (0.0815)

0.93 0.75 0.70 0.2796 0.3696 0.3760 0.2526

0.8768 0.8426 0.8718 0.8543I

I

I
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Tablo 3.5 (Cont'd.)

PXZ Pyz Pxy Pmtl PMt2 Pal P83

0.7959 0.79741 0.7797 0.71983

(0.0528) (0.0406) (0.0527) (0.0645)

0.94 0.85 0.80 0,5689 0.56641 0.4919 0.4531

0.9204 0.90892 0.9222 0.821

0.8982 0.8978 0.8778 0,8110

(0.0289) (0.0200) (0.0306) (0.0*493)

0.95 0.95 0.90 0.7152 0.7845 0.?331 0.60793

0.9634 0).9467 0.9595 0.9149

0.9486 0.9490 0.9276 0.8559

(0.0151) (0.0103) (0.0199) (0,0419)

0.9? 0.97 0.95 0.8549 0.9100 0.8039 0.6529

0.9808 0.9?43 0.9761 0.9576

/ i
- __ __ ~~ - ~ ~p p ~ * ~ ~ .~ * 1
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Table 3.6 Summary Statistics of Sample
Correlations - File with n.50 Records3Conditional Positive Dependence Case

Pxz PYZ Pxy PM11 Pmt2 Pal P83

0.9491 0.0001 0.0015 0.0025

(0.0148) (0.0245) (0.1475) (0.1427)

0.00 0.10 0.95 0.8700 -0.1447 -0.5256 -0.5157

0.9828 0.1506 0.4727 0.,5145

0.8776 0.5934 0.5809 0.5358

(0.0336) (0.0817) (0.0928) (0.0981)

0.92 0.65 0.88 0.6908 0.2791 0.1519 0.1593

0.9576 0.8031 0.8181 0.8338

0.9183 0.6944 0.6771 0.6257

(0.0225) (0.0638) (0.0752) (0.0834)

0.93 0.75 0.92 0.8119 0.4028 0.3506 0.2950

0.9698 0.8628 0.8599 0.8595

I =

-. ~i<I~ ~ ~ iI~4'.r



152

Table 3.6 (Cont'd.)

Pxz Pyz Pxy Pmtl Pint2 Psi Ps3

0.9595 0.7967 0.7803 0.7198

(0.0116) (0.0415) (0.0512) (0.0627)K

0.94 0.85 0.96 0.8793 0.6023 0.5699 0.3595

0.9853 0.8960 0.9158 0.8824

0.9794 0.8973 0.8776 0.8106

(0.0061) (0.0200) (0.0294) (0.0468)

0.95 0.95 0.98 0.9390 0.8096 0.7596 0.62731

0.9932 0.9506 0.9570 0.9279

0.9898 0.9492 0.9281 0.8555

(0.0029) (0.0107) (0.0200) (0.0426)

0.97 0.97 0.99 0.9736 0.8927 0.8181 0.65011

0.9964 0.9757 0.9713 0.9555

r

....... ..... -- ---1 11d
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Table 3.7 Summary Statistics of Sample
Correlations - Files with n=25 Records3 IConditional Positive Dependence Case

PXZ Pyz Pxy Pmt1 Pmt2 Pl Ps2 Ps3

I
0.4933 0.0008 -0.0027 -0.0063 0.0012

(0.1574) (0.0451) (0.2117) (0.2105) (0.2044)

0.00 0.10 0.50 -0.0632 -0.1632 -0.6421 -0.6421 -0.0035

0.8777 0.1976 0.6186 -0.6186 0.5807

* 0.7425 0.5876 0.5655 0.5622 0.5236

(0.0940) (0.1108) (0.1292) (0.1301) (0.1430)

0.92 0.65 0.75 0.2986 0.1141 -0.0065 -0.0065 0.0205

0.9390 0.8326 0.8621 -0.8621 0.8285

10.7943 0.6919 0.6683 0.6691 0.6249

(0.0762) (0.0889) (0.1109) (0.1102) (0.1180)

0.93 0.75 0.80 0.3982 0.3129 0.1844 0.1844 0.2023

0.9373 0.8978 0.9047 0.9047 0.8853

_|
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